UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :HE Transportation and Communications
Main Author :Nur Syahirah Husin Basri
Title :Evaluation of the mathematical model for traffic flowing through a merging area on the Malaysia Federal Highway operation
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2020
Notes :With cd
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :The author has requested the full text of this item to be restricted.

Abstract : Universiti Pendidikan Sultan Idris
The purpose of this study was to evaluate the mathematical model for traffic flowing through a merging area on the Malaysia Federal Highway operation which ramp areas at  Kilometer   31.6  from  Shah  Alam  to  Kuala  Lumpur,  Kilometer  32.9  from  Kuala Lumpur  to  Shah  Alam   and  Kilometer  33  from  Kuala  Lumpur  to  Shah  Alam.  The continuous flow model was used in  this study that assumes traffic flow to be similar to the heat equation in regards to the concept  of the one-dimensional viscous flow of compressible fluid. The research design used in this study  was comparative method. The continuous flow model set an initial condition, together with a set of  boundary conditions,  was  prescribed  to  solve  the  partial  differential  equation.  The   boundary conditions were selected to assess the suitableness of the design of the entrance ramp in    Malaysia.   A   sample   of   highway  traffic   data   was   collected   on   the   tapered  acceleration lane and obtained by the videotaping method. The highway traffic data were  provided   by  the  Faculty  of  Civil  Engineering,  Universiti  Teknologi  Mara (UiTM). The Maple  programming was used to write an algorithm program to evaluate the solution in terms of Fourier  series with a finite number of iterations. The findings of this study disclosed  the instantaneous  speed  ratios at lower values of  easiness to flow were converging slower compared to the higher  values of instantaneous speed ratio. The instantaneous speed ratio values were found to be more  accurate when the additional  iteration  numbers  were  considered  and  the  traffic’s   instantaneous  speed ratio for three selected sites on the Malaysia Federal Highway was less than  1.39 at location 0.4 which was less than 1.4 as proposed by theoretical model. In conclusion, the  mathematical model was found to be accurate in estimating the safe distance and speed of vehicles  on merging area so that the collision can be minimized and for the assessment  and  decision-making   of  the  configuration  of  the  traffic  flow.  As  the implication,  this  study  on  the   mathematical  model  and  theories  of  traffic  flow provides the possibilities of the improvement  for the design of the entrance ramp in Malaysia.  


Abdul Aziz, Z. (2010). An Overview of the Importance of Industrial Mathematics. Journal of Science  

and   Mathematics   Letter,   2(2),   9-17.      Retrieved   December,   1,   2010,   from /article/view/427


Adnan, M.A. (2007). Development of Entrance Ramp Merging Density Model Based on an Urban   

Expressway   Traffic   Condition. School   of   Civil   Engineering,   Universiti   Sains Malaysia.


Akçelik, R., Roper, R., & Besley, M. (1999). Fundamental Relationships for Freeway Traffic Flows. 

Australian Road Research Board.


Alperovich, T.,  & Sopasakis, A. (2008). Stochastic Description of Traffic Flow. Journal of 

Statistical Physics, 133(6), 1083.


Anuar, K., Habtemichael, F., & Cetin, M. (2015). Estimating Traffic Flow Rate on Freeways from 

Probe Vehicle Data and Fundamental Diagram. IEEE 18th International Conference on Intelligent 

Transportation Systems, 2921-2926.


Aw,  A.  A.  T.  M.,  Klar,  A.,  Rascle,  M.,  &  Materne,  T.  (2002).  Derivation  of  Continuum 

Traffic   Flow  Models   from  Microscopic   Follow-the-leader  Models. SIAM   Journal  on Applied  

Mathematics, 63(1), 259-278.


Babicheva, T. S., & Babichev, D. S. (2015). Numerical Methods for Modeling of Traffic Flows  at    

Research    and    Optimization    of    Traffic    on    the    Signal-controlled    Road 

Intersections. ITQM,   461-468.


Bellemans, T., De Schutter, B., & De Moor, B. (2002). Models for traffic control. JOURNAL A, 

43(3/4), 13-22.


Berg,   P.,   Mason,   A.,   &   Woods,   A.   (2000).   Continuum   Approach   to   Car-following 

Models. Physical Review E, 61(2), 1056.


Brackstone,      M.,      &      McDonald,      M.      (1999).      Car-following:      a      

Historical Review. Transportation  Research  Part  F:  Traffic  Psychology  and  Behaviour, 2(4),  



Brilon,  W.,  Geistefeldt,  J.,  &  Regler,  M.  (2005).  Reliability  of  Freeway  Traffic  Flow:  


Stochastic  Concept  of  Capacity.  Proceedings  of  the  16th  International  symposium  on 

transportation and traffic theory, 125(143).


Chandler,  R.E.,  Herman,  R.,  &  Montrall,  E.W.  (1958).  Traffic  Dynamics:  Studied  in  Car- 

Following. Operation Research, 6(2), 165-184.


Chanut, S., & Buisson, C. (2003). Macroscopic Model and Its Numerical Solution for Two- flow   

Mixed   Traffic   with   Different   Speeds   and   Lengths. Transportation   research record, 

1852(1), 209-219.


Chen,  J.,  &  Fang,  Y.  (2015).  Macroscopic  Modeling  for  Traffic  Flow  on  Three-lane 

Highways. International Journal of Modern Physics C, 26(11).


Choudhary, A., & Gokhale, S. (2016). Urban Real-world Driving Traffic Emissions during Interruption 

   and    Congestion. Transportation    Research    Part    D:    Transport    and Environment, 43, 



Chu, K. C., Saigal, R., & Saitou, K. (2016). Stochastic  Lagrangian Traffic Flow Modeling and 

Real-time Traffic Prediction. IEEE International Conference on Automation       Science and 

Engineering (CASE), 213-218.


Daganzo,   C.F.   (1995).   Requiem   for   Second-order   Fluid   Approximations   of   Traffic 

Flow. Transportation Research Part B: Methodological, 29(4), 277-286.


Daganzo,  C.F.  (2002).  A  Behavioral  Theory  of  Multi-lane  Traffic  Flow.  Part  I:  Long 

Homogeneous Freeway Sections. Transportation Research Part B: Methodological, 36(2), 131-158.


Dawkins,   P.   (2018).   Paul’s   Online   Math   Notes.   Retrieved   June,   6,   2018,   from


Dong,  C.,  Dolan,  J.  M.,  &  Litkouhi,  B.  (2017).  Intention  Estimation  for  Ramp  Merging 

Control  in Autonomous Driving. IEEE Intelligent Vehicles Symposium (IV), 1584-1589.


Drew,   D.R.   (1964).   Theoretical   Approaches   to   the   Study   and   Control   of   Freeway

Congestion.  Texas Transportation Institute.


Du,   J.,   Rakha,   H.   A.,   Elbery,   A.,   &   Klenk,   M.   (2018). Microscopic   simulation  

 and calibration of a large-scale metropolitan network: Issues and proposed solutions.


Francesco,   D.M.,   &   Rosini,   M.D.   (2015).   Rigorous   Derivation   of   Nonlinear   Scalar 

Conservation Laws from Follow-the-leader Type Models via Many Particle Limit. Archive for rational 

mechanics and analysis, 217(3), 831-871.


Freckleton, D.R. (2012). Traffic Operations Analysis of Merging Strategies   for Vehicles    in an 

Automated      Electric      Transportation      System.       All      Graduate      Theses      

and Dissertations.1418.


Frejo, J. R. D., Papamichail,  I., Papageorgiou, M., & Camacho, E. F. (2015). Macroscopic Modeling 

and Control of Reversible Lanes on Freeways. IEEE Transactions on Intelligent Transportation 

Systems, 17(4), 948-959.


Gao, Z., Zhang, N., Mannini, L., & Cipriani, E. (2018). The br Model with Relative   Speed in  

Front on the Three-Lane Road. Discrete Dynamics in Nature and Society.


Gazis,  D.  C.,  Herman,  R.,  &  Potts,  R.  B.  (1959).  Car-Following  Theory  of  Steady-State 

Traffic   Flow. Operations research, 7(4), 499-505.


Gettman,   D.,   Head,   L.,   &   Mirchandani,   P.   (1999). RHODES-ITMS   Corridor   Control 

Project (No. FHWA-AZ99-462).


Gendreau,  M.,  Ghiani,  G.,  &  Guerriero,  E.  (2015).  Time-dependent  Routing  Problems:  A 

Review. Computers & Operations Research, 64, 189-197.


Gipps,      P.G.      (1981).      A      Behavioral      Car-Following      Model      for      

Computer Simulation. Transportation Research Part B: Methodological, 15(2), 105-111.


Gordon,  W.  J.,  &  Newell,  G.  F.  (1964).  Equilibrium  Analysis  of  a  Stochastic  Model  of 

Traffic  Flow.  Mathematical  Proceedings  of  the  Cambridge  Philosophical  Society,  60(2), 



Gold, C., Körber, M., Lechner, D., & Bengler, K. (2016). Taking Over Control from Highly Automated  

Vehicles  in  Complex  Traffic  Situations:  the  Role  of  Traffic  Density. Human

factors, 58(4), 642-652.


Greenberg, H. (1959). An Analysis of Traffic Flow. Operations research, 7(1), 79-85.


Greenshield,  B.  (1935).  A  Study  of  Capacity.   Proceedings  of  the  Highway  Research Board, 

14, 967-976.


Hadiuzzaman, M., Qiu, T. Z., & Lu, X. Y. (2012). Variable Speed Limit Control Design for Relieving  

  Congestion    Caused    by    Active    Bottlenecks. Journal    of    Transportation Engineering, 

139(4), 358-370.


Habtemichael, F. G., & Cetin, M. (2016). Short-term Traffic Flow Rate Forecasting Based on 

Identifying    Similar    Traffic    Patterns. Transportation    research    Part    C:    Emerging 

Technologies, 66, 61-78.


Haight,  F.  A.,  Whisler,  B.  F.,  &  Mosher,  W.  W.  (1961).  New  Statistical  Method  for 

Describing  Highway Distribution of Cars. Highway Research Board Proceedings,  40.


Haight,  F.  A.,  Bisbee,  E.  F.,  &  Wojcik,  C.  (1963). Some  Mathematical  Aspects  of  the 

Problem   of Merging. Institute of Transportation and Traffic Engineering.


Harr,  M.  E.,  &  Leonards,  G.  A.  (1962).  A  Theory  of  Traffic  Flow  for  Evaluation  of  

the Geometric Aspects of Highways.


Haque, N. N., Halder, S., Islam, M. A., Nag, R., Alam, M. R. B., Hassan, M. M., & Hasnaine

M. S. (2013).Traffic Speed Study. Department of Civil Engineering. Ahsanullah University of Science 

and Technology.


He, Z., Zheng, L., & Guan, W. (2015). A Simple Nonparametric Car-following Model Driven by Field 

Data. Transportation Research Part B: Methodological, 80, 185-201.


Hoogendoorn,  S.  P.,  &  Bovy,  P.  H.  (2001).  State-of-the-art  of  Vehicular  Traffic  Flow 

Modelling. Proceedings  of  the  Institution  of  Mechanical  Engineers,  Part  I:  Journal  of 

Systems  and Control Engineering, 215(4), 283-303.


Hu, X., & Sun, J. (2019). Trajectory Optimization of Connected and Autonomous Vehicles at a   

Multilane   Freeway   Merging   Area. Transportation   Research   Part   C:   Emerging

Technologies, 101, 111-125.


Hua, X. D., Wang, W., & Wang, H. (2016). A Car-following Model with the Consideration

of Vehicle-to-vehicle Communication Technology. Acta Physica Sinica, 65(1), 010502.


Hung Tang, K., Xiao He, L., Ming Min, G., & Zheng, W. (2015). A New Traffic Model with a 

Lane-Changing Viscosity Term. Chinese Physics B, 24(9).


Hughes,  B.  P.,  Newstead,  S.,  Anund,  A.,  Shu,  C.  C.,  &  Falkmer,  T.  (2015).  A  review  

of models   relevant to road safety. Accident Analysis & Prevention, 74, 250-270.


Jabeena, M. (2013). Comparative Study of Traffic Flow Models and Data Retrieval Methods from Video 

Graphs. International Journal of Engineering Research and Applications, 3(6), 1087-1093.


Jabari,  S.  E.,  &  Liu,  H.  X.  (2012).  A  Stochastic  Model  of  Traffic  Flow:  Theoretical 

Foundations. Transportation Research Part B: Methodological, 46(1), 156-174.


Jiang,  R.,  Wu,  Q.,  &  Zhu,  Z.  (2001).  Full  Velocity  Difference  Model  for  a  

Car-following Theory. Physical Review E, 64(1).


Jiang, R., Wu, Q. S., & Zhu, Z. J. (2002). A New Continuum Model for Traffic Flow and Numerical 

Tests. Transportation Research Part B: Methodological, 36(5), 405-419.


Jiang, Y. Q., Ma, P. J., & Zhou, S. G. (2018). Macroscopic Modeling Approach to Estimate 

Traffic-related Emissions in Urban Areas. Transportation Research Part D: Transport and 

Environment, 60, 41-55.


Jin, J., Ma, X., & Kosonen, I. (2017). A Stochastic Optimization Framework for Road Traffic 

Controls   Based   on   Evolutionary   Algorithms   and   Traffic   Simulation. Advances   in 

Engineering Software, 114, 348-360.


Kanai, M., Nishinari, K., & Tokihiro, T. (2005). Stochastic Optimal Velocity Model and its 

Long-lived Metastability. Physical Review E, 72(3), 035102.Khan, Z. H., Gulliver, T. A.,


Kerner,  B.  S.  (2015).  Failure  of  Classical  Traffic  Flow  Theories:  A  Critical  Review.e  

&i Elektrotechnik and Informationstechnik, 132(7), 417-433.


Khan, J. A., & Tarry, S. R. (2018). Speed Spot Study by Comparing Time Mean Speed and Space Mean 

Speed. International Journal of Advanced Science and Research, 3(1), 97-102.


Khan, Z. H., Gulliver, T. A., Nasir, H., Rehman, A., & Shahzada, K. (2019). A Macroscopic Traffic   

Model   Based    on   Driver    Physiological   Response. Journal    of   Engineering Mathematics, 

115(1), 21-41.


Kita, H., Tanimoto, K.,  & Fukuyama,  K.  (2002). A Game Theoretic Analysis of Merging- Giveway  

Interaction:  a  Joint  Estimation  Model.  Proceedings  of  the  15th  International Symposium on 

Transportation and  Traffic Theory, 503-518.


Kometani,    E.,    &    Sasaki,    T.    (1959).    A    Safety    Index    for    Traffic    with 

   Linear Spacing. Operations research, 7(6), 704-720.


Kometani, E., & Sasaki, T., (1961). Dynamic Behavior of Traffic with a Nonlinear Spacing. In:   

Herman, R. (Ed.), Theory of Traffic Flow.105–119.


Kraus,  S.  (1997).  Towards  a  Unified  View  of  Microscopic  Traffic  Flow  Theories. IFAC 

Proceedings, 30(8), 901-905.


Kwon,  S.,  &  Kim,  T.  (2018).  Study  on  the  Behavior  of  Merging  Vehicles  at  Highway 

Junctions. Journal information service system, 179-179.


Lazar,  H.,  Rhoulami,  K.,  &  Rahmani,  D.  (2016).  A  Review  Analysis  of  Optimal  Velocity 

Models. Periodica Polytechnica Transportation Engineering, 44(2), 123-131


Lazar,  H.,  Rhoulami,  K.,  &  Rahmani,  M.  D.  (2017).  Microscopic  Evaluation  of  Extended 

Car-following Model  in Multi-lane Roads. Informatica, 42(1).


Leclercq, L., Laval, J. A., & Chevallier, E. (2007). The Lagrangian Coordinates and wWhat It Means 

for First Order Traffic Flow Models. Transportation and Traffic Theory 2007.


Leclercq,  L.  (2007a).  Hybrid  Approaches  to  the  Solutions  of  the  “Lighthill–Whitham– 

Richards” Model. Transportation Research Part B: Methodological, 41(7), 701-709.


Li,     X.     (2018).     The     Symmetric     Intersection     Design     and     Traffic     


Optimization. Transportation Research Part C: Emerging Technologies, 92, 176-190.


Li,   L.,   &   Chen,   X.   M.   (2017).   Vehicle   Headway   Modeling   and   its   Inferences   


Macroscopic/microscopic  traffic  flow  theory:  A  survey. Transportation  Research  Part  C: 

Emerging Technologies, 76, 170-188.


Li, Y., & Sun, D. (2012). Microscopic Car-following Model for the Traffic Flow: the State of the 

Art. Journal of Control Theory and Applications, 10(2), 133-143.


Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., & Tang, L. (2011). Modeling and Simulation 

for   Microscopic  Traffic   Flow  based  on  Multiple  Headway,   Velocity  and Acceleration 

Difference. Nonlinear   Dynamics, 66(1-2), 15-28.


Li, Y., Quo, M., & Li, Y. (2018). A Car-Following Model Considering Two Different Time Delays and 

Stability Analysis. Chinese Control and Decision Conference (CCDC), 2746- 2751.


Li,  C.,  Jiang,  X.,  Wang,  W.,  Cheng,  Q.,  &  Shen,  Y.  (2016).  A  Simplified  Car-following 

Model  Based on the Artificial Potential Field. Procedia engineering, 137, 13-20.


Liao, P., Tang, T. Q., Wang, T., & Zhang, J. (2019). A Car-following Model Accounting for the 

Driving Habits. Physica A: Statistical Mechanics and its Applications, 525, 108-118.


Liu, F., Cheng, R., Ge, H., & Yu, C. (2016). A New Car-following Model with Consideration of  the  

Velocity  Difference  Between  the  Current  Speed  and  the  Historical  Speed  of  the Leading 

Car. Physica A: Statistical Mechanics and its Applications, 464, 267-277.


Lighthill,  M.  J.,  &  Whitham,  G.  B.  (1955).  On  Kinematic  Waves  II.  A  Theory  of  

Traffic Flow on  Long  Crowded  Roads. Proceedings  of  the  Royal  Society  of  London.  Series  

A. Mathematical and  Physical Sciences, 229(1178), 317-345.


Lopez,  P.  A.,  Behrisch,  M.,  Bieker-Walz,  L.,  Erdmann,  J.,  Flötteröd,  Y.  P.,  Hilbrich,  

R. WieBner,  E.  (2018).  Microscopic  Traffic  Simulation  Using  Sumo.  21st  International 

Conference on Intelligent Transportation Systems (ITSC), 2575-2582.


Mathew, T.V., & Rao, K.K. (2006). Introduction to Transportation Engineering. Marshal Mix Design, 

National Program on Technology Enhanced  Learning  (NPTEL).


Mathew, T. V. (2014). Transportation Systems Engineering. Cell Transmission Models, IIT



Manual, H. C. (2000). Highway Capacity Manual.2.

McCoy, P. T., & Pesti, G. (2001). Dynamic Late Merge–Control Concept for Work Zones  on

Rural Interstate Highways. Transportation Research Record, 1745(1), 20-26.


Milanés, V., Godoy, J., Villagrá, J., & Pérez, J. (2010). Automated On-ramp Merging System for   

Congested   Traffic   Situations. IEEE   Transactions   on   Intelligent   Transportation Systems, 

12(2), 500-508.


Nasir,  H.,  Rehman,  A.,  &  Shahzada,  K.  (2019).  A  Macroscopic  Traffic  Model  Based  on 

Driver  Physiological Response. Journal of Engineering  Mathematics, 115(1), 21-41.


Newell, G.F. (1955). Mathematical Models for Freely-flowing Highway Traffic. Journal of Operations 

Research Society of America, 3(2), 176-186.


Newell,   G.F.   (2002).   A   Simplified   Car-following   Theory:   A   Lower   Order   Model.

Transportation Research Part B: Methodological, 36(3), 195-205.


Ngoduy D & Liu R. (2007). Multiclass First-order Simulation Model to Explain Non-linear Traffic 

Phenomena. Phys A Stat Mech Appl, 385(2):667–682.


Ngoduy   D.    (2010).    Multiclass    First-order    Modelling    of    Traffic    Networks    

Using Discontinuous   Flow–density Relationships. Transportmetrica 6(2):121–141.


Ngoduy  D.  (2011).  Multiclass  First-order  Traffic  Model  Using  Stochastic  Fundamental 

Diagrams. Transportmetrica, 7(2):111–125.


Ngoduy,  D.,  Lee,  S.,  Treiber,  M.,  Keyvan-Ekbatani,  M.,  &  Vu,  H.  L.  (2019).  Langevin 

Method  for    a     Continuous     Stochastic     Car-following    Model     and     its     

Stability Conditions. Transportation  Research Part C: Emerging Technologies, 105, 599-610.


Okuda, H., Harada, K., Suzuki, T., Saigo, S., & Inoue, S. (2016). Modeling and Analysis of 

Acceptability  for  Merging  Vehicle  at  Highway  Junction.  International  Conference  on 

Intelligent Transportation Systems (ITSC).1004-1009.


Olstam, J. J., & Tapani, A. (2004). Comparison of Car-following Models. Swedish National

Road and Transport Research Institute. 960.


Orosz,  G.,  Wilson,  R.  E.,  &  Stépán,  G.  (2010).  Traffic  Jams:  Dynamics  and  Control.

Philoshopical Transaction   of the Royal Society A: Mathematical, Physic and Engineering Science. 

368 (1982), 4455-4479.


Ou, H., Tang, T. Q., Zhang, J., & Zhou, J. M. (2018). A Car-following Model Accounting for 

Probability  Distribution. Physica  A:  Statistical  Mechanics  and  its  Applications, 505,  105- 



Panwai,  S.,  &  Dia,  H.  (2005).  Comparative  Evaluation  of  Microscopic  Car-following 

Behavior. IEEE Transactions on Intelligent Transportation Systems, 6(3), 314-325.


Papathanasopoulou,   V.,   &   Antoniou,   C.   (2015).   Towards   Data-driven   Car-following 

Models. Transportation Research Part C: Emerging Technologies, 55, 496-509.


Park,   H.,   &   Smith,   B.   L.   (2012).   Investigating   Benefits   of   Intel   Drive   in   

Freeway Operations:   Lane Changing  Advisory      Case       Study. Journal       of       

Transportation Engineering, 138(9), 1113-  1122.


Payne,  H.J.  (1977).  Discontinuity  in  Equilibrium  Freeway  Traffic  Flow.  Transportation 

Research Record.


Pipes,  L.  A.  (1953).  An  Operational  Analysis  of  Traffic  Dynamics. Journal  of  Applied 

Physics, 24(3), 274-281.


Pueboobpaphan, R., Liu, F., & Van Arem, B. (2010). The Impacts of a Communication based Merging 

Assistant    on  Traffic  Flows  of  Manual  and  Equipped  Vehicles  at  an  On-ramp Using  

Traffic Flow Simulation. International       IEEE       Conference       on       Intelligent 

Transportation Systems .1468-1473.


Qu, X., Zhang, J., & Wang, S. (2017). On the Stochastic Fundamental Diagram for Freeway Traffic:    

Model    Development,    Analytical    Properties,    Validation,    and    Extensive Applications. 

Transportation research part B: methodological, 104, 256-271.


Raj, J., Bahuleyan, H., & Vanajakshi, L. D. (2016). Application of Data Mining Techniques for 

Traffic Density Estimation and Prediction. Transportation Research Procedia, 17, 321-



Ranjitkar, P., Nakatsuji, T., Azuta, Y., & Gurusinghe, G. S. (2003). Stability Analysis Based

on   Instantaneous  Driving  Behavior  Using  Car-following  Data. Transportation  Research Record, 

1852(1), 140-151.


Ran,  B.,  Leight,  S.,  &  Chang,  B.  (1999).  A  Microscopic  Simulation  Model  for  Merging 

Control  on  a  Dedicated-lane  Automated  Highway  System. Transportation  Research  Part C:   

Emerging Technologies, 7(6), 369-388.


Razzaq,  A.  K.  (2017).  Model  Development  to  Predict  Free  Flow  Speed  for  Multi-lane 

Highways. Res. Rev. J. Eng. Technol, 6, 1-7.


Reddy, M.S. (1966). Quantitative Evaluation of the Effect of Merging Vehicles on  Freeway 

Operation. PhD. Thesis. Texas A and M University.


Roess, R. P., Prassas, E. S., & McShane, W. R. (2004). Traffic engineering. Pearson/Prentice Hall.


Rothery, R. W. (1992). Car Following Models. Traffic Flow Theory.


Sallis,  James  F.,  Lawrence  D.  Frank,  B.E.,  Saelens,  &  Katherine  M.K.  (2004).  Active 

Transportation  and  Physical  Activity:  Opportunities  for  Collaboration  on  Transportation and 

Public Health Research. Transportation Research Part A: Policy and Practice, 38(4), 249-268.


Sekhar, C. R., Nataraju, J., Velmurugan, S., Kumar, P., & Sitaramanjaneyulu, K. (2016). Free Flow   

Speed   Analysis   of   Two   Lane   Inter   Urban   Highways. Transportation   research procedia, 

17,   664-673.


Shah, P. M., & Niharika, G.  (2016). Study of Traffic  Flow Characteristics on the National Highway 

(NH-1) Connecting Jalandhar Phagwara. International Journal of Latest trends in Engineering and 

Technology, 6(4), 1-12.


Sharma, H. K., & Swami, M. (2012). Effect of Turning Lane at Busy Signalized At-Grade Intersection 

under Mixed Traffic in India.


Spiliopoulou,  A.,  Papamichail,  I.,  Papageorgiou,  M.,  Tyrinopoulos,  Y.,  &  Chrysoulakis,  J. 

(2017).   Macroscopic   Traffic   Flow   Model   Calibration   Using   Different   Optimization

Algorithms. Operational Research, 17(1), 145-164.


Sun, J., Li, Z., & Sun, J. (2015). Study on Traffic Characteristics for a Typical Expressway on   

Ramp   Bottleneck   Considering   Various   Merging   Behaviors. Physics   A:   Statistical 

Mechanics  and its Applications, 440, 57-67.


Sutarto,  H.  Y.,  Boel,  R.  K.,  &  Joelianto,  E.  (2015).  Parameter  Estimation  for  

Stochastic Hybrid   Model   Applied   to   Urban   Traffic   Flow   Estimation. IET   Control   

Theory   & Applications, 9(11),  1683-1691.


Tang, T. Q., Wong, S. C., Huang, H. J., & Zhang, P. (2009). Macroscopic Modeling of Lane? Changing 

for Two  ?lane  Traffic  Flow.  Journal  of  Advanced  Transportation, 43(3),  245- 273.


Tang, Z., Chen, S., Cheng, J., Ghahari, S. A., & Labi, S. (2018). Highway Design and  Safety 

Consequences: A case study of interstate highway vertical grades. Journal of  Advanced 



Tie-Qiao, T., Hai-Jun, H., Wong, S. C., & Rui, J. (2009). A New Car-following Model with 

Consideration of the   Traffic Interruption Probability. Chinese Physics B, 18(3), 975.


Treiber,  M.,  &  Kesting,  A.  (2013).  Traffic  Flow  Dynamics. Traffic  Flow  Dynamics:  Data, 

Models and   Simulation.


Troutbeck, R. (2002). The Performance of Uncontrolled Merges Using a Limited  Priority Process. 

Proceedings of the 15th   International Symposium on Transportation and  Traffic Theory, 463- 482.


Underwood, R. T. (1961) Speed, Volume, and Density relationships. In: Quality and  Density of 

Traffic Flow, Yale Bureau of Traffic, 66-76.


Unit,  E.  P.  (2015).  Eleventh  Malaysia  Plan,  2016-2020,  Anchoring  Growth  on  People. 

Putrajaya, Prime Minister’s Department.


Wageningen Kessels, V.F., Van Lint, H., Vuik, K., & Hoogendoorn, S. (2015). Genealogy of Traffic 

Flow Models. EURO Journal on Transportation and Logistics, 4(4), 445-473.


Waldeer,  K.  T.  (2004).  Numerical  Investigation  of  a  Mesoscopic  Vehicular  Traffic  Flow

Model  Based on a Stochastic Acceleration Process.


Wang,   J.,   Liu,   R.,   &   Montgomery,   F.   (2005).   Car-following   Model   for   Motorway

Traffic. Transportation Research Record, 1934(1), 33-42.


Wang,  H.,  Li,  J.,  Chen,  Q.  Y.,  &  Ni,  D.  (2009).  Speed-Density  Relationship:  From 

Deterministic  to  Stochastic.  In 88th  TRB  Annual  Meeting.  Washington:  Transportation 

Research Board, 09, 1527.


Wang,  T.,  Zhang,  J.,  Li,  G.,  Xu,  K.,  &  Li,  S.  (2018).  A  New  Car-Following  Model  

with Consideration of Dynamic Safety Distance. Discrete Dynamics in Nature and   Society.


Wong, G. C. K., & Wong, S. C. (2002). A Multi-class Traffic Flow Model–An Extension of LWR  Model  

with  Heterogeneous  Drivers. Transportation  Research  Part  A:  Policy  and Practice, 36(9), 



Wilson, R. E. (2001). An Analysis of Gipps's Car?Following Model of Highway Traffic. IMA Journal of 

Applied Mathematics, 66(5), 509-537.


Xie, F., & Feng, Q. (2013). Research of Effects of Accident on Traffic Flow Characteristics. 

Proceedings International Conference on Mechatronic Sciences, Electric Engineering and Computer 

(MEC), 1670-1674.


Yang,   L.,  &  Chu,  C.   P.  (2011). Stochastic  model  for   traffic  flow  prediction  and  its 

validation, 11, 86.


Ye,   L.,   &  Yamamoto,   T.  (2018).  Modeling  Connected  and  Autonomous  Vehicles  in 

Heterogeneous  Traffic  Flow. Physica  A:  Statistical  Mechanics  and  its  Applications, 490, 



Yu, S., & Shi, Z. (2015). An Improved Car-following Model Considering Headway Changes with  Memory. 

Physica A: Statistical Mechanics and its Applications, 421, 1-14.


Yu, C., Zhang, J., Yao, D., Zhang, R., & Jin, H. (2016). Speed-density Model of Interrupted Traffic 

Flow Based on Coil Data. Mobile Information Systems.


Zamith, M., Leal-Toledo, R. C. P., Clua, E., Toledo, E. M., & de Magalhães, G. V. (2015). A New  

Stochastic  Cellular  Automata  Model  for  Traffic  Flow  Simulation  with  Drivers’

Behavior  Prediction. Journal of computational science, 9, 51-56.


Zeng, Y. Z., & Zhang, N. (2016). Review and New Insights of the Car-following Model for

Road  Vehicle  Traffic  Flow. Proceedings  of  the  6th  International  Asia  Conference  on 

Industrial Engineering and Management Innovation, 87-96.


Zedda, M., & Pinna, F. (2018). Prediction Models for Space Mean Speed on Urban Roads. Proceedings   

of   International   Conference   on   Computational   Intelligence   and   Data Engineering, 



Zhang, H. M. (1999). A Mathematical Theory of Traffic Hysteresis. Transportation Research Part B: 

Methodological, 33(1), 1-23.


Zhang, M., Shu, C. W., Wong, G. C., & Wong, S. C. (2003). A Weighted Essentially Non- oscillatory 

Numerical Scheme for a Multi-class Lighthill–Whitham–Richards Traffic Flow Model. Journal of 

Computational Physics, 191(2), 639-659.


Zhang,  S.,  Wu,  G.,  Costeira,  J.  P.,  &  Moura,  J.  M.  (2017).  Understanding  Traffic  

Density from  Large-Scale  Web  Camera  Data.  Proceedings  of  the  IEEE  Conference  on  Computer 

Vision  and Pattern Recognition, 5898-5907.


Zhang, J. (2018). Probabilistic Modelling for Flow Density Relationship.


Zhang, J., & Wang, X. (2018, June). Validation of an Optimization Model Based Stochastic Traffic  

Flow  Fundamental  Diagram.  International  Conference  on  Intelligent  Interactive Multimedia 

Systems and Services, 329-337.


Zhu,  J.,  &  Saccomanno,  F.  F.  (2004).  Safety  Implications  of  Freeway  Work  Zone  Lane

Closures. Transportation research record, 1877(1), 53-61.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at or Whatsapp +60163630263 (Office hours only)