UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This study aims to enhance the performance of microfluidic-based capacitive pressure
sensor using square membrane shapes and ellipse and square-shaped microchannel patterns.
This study also investigates the pressure sensor using propylene carbonate as electrolyte in term
of boiling point and dielectric constant. The microfluidic-based capacitive pressure sensor
investigates for pressure measurement by using square and ellipse-shaped microchannel patterns.
When a pressure was applied on to the membrane, it provides deflection and
displaces the liquid inside the microchannel. The liquid movement induces changes in
capacitance. During the design stage, a simulation analysis on two different membrane
structures, including square and rectangular, were studied. In addition, two different
microchannel designs, including ellipse and square shape pattern, were designed and simulated. The
finalized sensor design was fabricated using soft lithography, printed circuit board (PCB) and
sealing process. Then, a fluidic-based pressure sensor was characterized based on fluid
mechanism, pressure measurement, temperature effect and lifetime effect. The
experimental result showed that the fluid mechanism for the ellipse-shaped
microchannel was linearly increased as the pressure increase compared to the square shape which was
non-linear. For pressure measurement, error percentage of hysteresis was obtained for the
ellipse-shaped microchannel is 0.6% which was quite low compared to the square-shaped
microchannel, which is 23% of error. For the temperature effect of the ellipse-shaped
microchannel, its capacitance increased about 0.86% ranging from 20 to 50 ?C, which is
suitable for a sensor to operate at room temperature. The use of the propylene carbonate
increased the lifespan of the sensor due to its boiling point property. In conclusion, a
fluidic-based capacitive pressure sensor was successfully developed using a
square and an ellipse-shaped microchannel. The ellipse-shaped microchannel showed
excellent performance than the square-shaped microchannel. For the research implication,
it can be used by researchers as a guideline and reference especially in developing pressure sensors.
|
References |
Almassri, A. M., Wan Hasan, W. Z., Ahmad, S. A., Ishak, A. J., Ghazali, A. M., Talib, D. N., et al (2015). Pressure sensor: state of the art, design, and application for robotic hand. Journal of Sensors, 2015.
Antony, R., Nandagopal, M. G., Sreekumar, N., & Selvaraju, N. (2014). Detection principles and development of microfluidic sensors in the last decade. Microsystem Technologies, 20(6), 1051-1061.
Chen, J. Z., Darhuber, A. A., Troian, S. M., & Wagner, S. (2004). Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab on a Chip, 4(5), 473-480.
Chen, J., & Liu, C. (2003). Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. Journal of Microelectromechanical systems, 12(6), 979-988.
DeHennis, A., Chae, J., & Baroutaji, A. (2016). Pressure sensors.
Dijkstra, M., de Boer, M. J., Berenschot, J. W., Lammerink, T. S., Wiegerink, R. J., & Elwenspoek, M. (2007, January). Miniaturized flow sensor with planar integrated sensor structures on semicircular surface channels. In 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 123-126). IEEE.
Dijkstra, M., de Boer, M. J., Berenschot, J. W., Lammerink, T. S., Wiegerink, R. J., & Elwenspoek, M. (2008). Miniaturized thermal flow sensor with planar- integrated sensor structures on semicircular surface channels. Sensors and Actuators A: Physical, 143(1), 1-6.
Dijkstra, M., Lammerink, T. S. J., Wiegerink, R. J., & Elwenspoek, M. (2006). Nano- flow thermal sensor applying dynamic ω-2ω sensing method. In Proceeding of MME.
Eaton, W. P., & Smith, J. H. (1997). Micromachined pressure sensors: review and recent developments. Smart Materials and Structures, 6(5), 530.
Elbuken, C., Glawdel, T., Chan, D., & Ren, C. L. (2011). Detection of microdroplet size and speed using capacitive sensors. Sensors and Actuators A: Physical, 171(2), 55-62.
Eswaran, P., & Malarvizhi, S. (2012, March). Sensitivity analysis on mems capacitive differential pressure sensor with bossed diaphragm membrane. In 2012 International Conference on Devices, Circuits and Systems (ICDCS) (pp. 704- 707). IEEE.
Eswaran, P., & Malarvizhi, S. (2013). MEMS capacitive pressure sensors: a review on recent development and prospective.
Ferrari, V., & Prudenziati, M. (2012). Printed thick-film capacitive sensors. In Printed Films (pp. 193-220). Woodhead Publishing.
Fleming, W. J. (2001). Overview of automotive sensors. IEEE sensors journal, 1(4), 296-308.
Ganji, B. A., & SHAMS, N. M. (2013). Modeling of capacitance and sensitivity of a MEMS pressure sensor with clamped square diaphragm.
Gentili, E., Tabaglio, L., & Aggogeri, F. (2005). Review on micromachining techniques. In AMST’05 advanced manufacturing systems and technology (pp. 387-396). Springer, Vienna.
Gieles, A. (1969, February). Subminiature silicon pressure transducer. In 1969 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Vol. 12, pp. 108-109). IEEE.
Gunawardane, K & Kularatna, N, (2015). Capacitors as energy storage devices— simple basics to current commercial families, Energy Storage Devices for Electronic Systems, Academic Press, Pages 137-148, ISBN 9780124079472,
Han, J., & Shannon, M. A. (2009). Smooth contact capacitive pressure sensors in touch-and peeling-mode operation. IEEE Sensors Journal, 9(3), 199-206.
Jeong, W., & Seong, J. (2014). Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods. International Journal of Mechanical Sciences, 78, 19- 26.
Kim, H. K., Lee, S., & Yun, K. S. (2011). Capacitive tactile sensor array for touch screen application. Sensors and Actuators A: Physical, 165(1), 2-7.
Lei, K. F., Lee, K. F., & Lee, M. Y. (2012). Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectronic Engineering, 99, 1-5.
Lei, K. F., Lee, K. F., & Lee, M. Y. (2014). A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure measurement. Microsystem technologies, 20(7), 1351-1358.
Lichtenberg, J., & Hierlemann, A. (2005, June). Liquid-core, piezoresistive, fully polymer-based pressure sensor. In The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05. (Vol. 1, pp. 491-494). IEEE.
Liu, C. (2007). Recent developments in polymer MEMS. Advanced Materials, 19(22), 3783-3790. Manaf, A. B. A., Nakamura, K., & Matsumoto, Y. (2008). Characterization of miniaturized one-side-electrode-type fluid-based inclinometer. Sensors and Actuators A: Physical, 144(1), 74-82.
Marjani, A., & Shirazian, S. (2011). Simulation of heavy metal extraction in membrane contactors using computational fluid dynamics. Desalination, 281, 422-428.
Mark J.E., Ed., Polymer Data Handbook, vol. 2. New York, NY, USA: Oxford Univ. Press, 2009.
McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., et al (2000). Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 21(1), 27-40.
Melani, M., Bertini, L., De Marinis, M., Lange, P., D'Ascoli, F., & Fanucci, L. (2008, March). Hot wire anemometric MEMS sensor for water flow monitoring. In Proceedings of the conference on design, automation and test in europe (pp. 342-347). ACM.
Mitrakos, V., Macintyre, L., Denison, F., Hands, P., & Desmulliez, M. (2017). Design, manufacture and testing of capacitive pressure sensors for low- pressure measurement ranges. Micromachines, 8(2), 41.
Mizuno, Y., Liger, M., & Tai, Y. C. (2004, January). Nanofluidic flowmeter using carbon sensing element. In 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest (pp. 322-325). IEEE.
Nallathambi, A., & Shanmuganantham, T. (2015). Design of Diaphragm Based MEMS Pressure Sensor with Sensitivity Analysis for Environmental Applications. Sensors & Transducers, 188(5), 48.
Narakathu, B. B., Eshkeiti, A., Reddy, A. S. G., Rebros, M., Rebrosova, E., Joyce, M. K. et al (2012, October). A novel fully printed and flexible capacitive pressure sensor. In SENSORS, 2012 IEEE (pp. 1-4). IEEE.
Nawi, M. N. M., Manaf, A. A., Rahman, M. F. A., Arshad, M. R., & Sidek, O. (2014). One-side-electrode-type fluidic-based capacitive pressure sensor. IEEE Sensors Journal, 15(3), 1738-1746.
Park, J. Y., Yoo, S. J., Lee, E. J., Lee, D. H., Kim, J. Y., & Lee, S. H. (2010). Increased poly (dimethylsiloxane) stiffness improves viability and morphology of mouse fibroblast cells. BioChip Journal, 4(3), 230-236.
Patsis, G. P., Petropoulos, A., & Kaltsas, G. (2012). Modelling and evaluation of a thermal microfluidic sensor fabricated on plastic substrate. Microsystem technologies, 18(3), 359-364.
Puers, R. (1993). Capacitive sensors: when and how to use them. Sensors and Actuators A: Physical, 37, 93-105.
Rahman, M. F. A., Arshad, M. R., Manaf, A. A., & Yaacob, M. I. H. (2011, September). Modelling of a novel design of microfluidic based acoustic sensor. In 2011 IEEE Regional Symposium on Micro and Nano Electronics (pp. 56-59). IEEE.
Rahman, M. F. A., Manaf, A. A., & Arshad, M. R. (2013). Capacitive effect of coplanar electrodes partially outside the microchannel region for underwater microfluidic-based sensor.
Rahman, M. F. A., Nawi, M. N. M., Manaf, A. A., & Arshad, M. R. (2014). Characterization of Microfluidic-Based Acoustic Sensor for Immersion Application. IEEE Sensors Journal, 15(3), 1559-1566.
Roberts, P., Damian, D. D., Shan, W., Lu, T., & Majidi, C. (2013, May). Soft-matter capacitive sensor for measuring shear and pressure deformation. In 2013 IEEE International Conference on Robotics and Automation (pp. 3529-3534). IEEE.
Saini, A., Ahmad, D., & Patra, K. (2016, April). Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications. In Electroactive Polymer Actuators and Devices (EAPAD) 2016 (Vol. 9798, p. 979813). International Society for Optics and Photonics.
Sekimori, Y., Yoshida, Y., & Kitamori, T. (2004, October). Pressure sensor for micro chemical system on a chip. In SENSORS, 2004 IEEE (pp. 516-519). IEEE.
Shuai, X., Zhu, P., Zeng, W., Hu, Y., Liang, X., Zhang, Y., et al (2017). Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS applied materials & interfaces, 9(31), 26314-26324
Singh, K., Joyce, R., Varghese, S., & Akhtar, J. (2015). Fabrication of electron beam physical vapor deposited polysilicon piezoresistive MEMS pressure sensor. Sensors and Actuators A: Physical, 223, 151-158.
Sparks, D. (2013). MEMS pressure and flow sensors for automotive engine management and aerospace applications. In MEMS for Automotive and Aerospace Applications (pp. 78-105). Woodhead Publishing.
Suter, J. D., Hohimer, C. J., Fricke, J. M., Christ, J., Kim, H., & Evans, A. T. (2013). Principles of meniscus-based MEMS gas or liquid pressure sensors. Journal of Microelectromechanical Systems, 22(3), 670-677.
Timoshenko, Stephen P., and Sergius Woinowsky-Krieger. Theory of plates and shells. McGraw-hill, 1959.
Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom?built compression instrument. Journal of Applied Polymer Science, 131(22).
Woo, S. J., Kong, J. H., Kim, D. G., & Kim, J. M. (2014). A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. Journal of Materials Chemistry C, 2(22), 4415-4422.
Wu, C. Y., Liao, W. H., & Tung, Y. C. (2011). Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on a Chip, 11(10), 1740-1746.
Wu, S., Lin, Q., Yuen, Y., & Tai, Y. C. (2001). MEMS flow sensors for nano-fluidic applications. Sensors and Actuators A: Physical, 89(1-2), 152-158.
Xiaoli, Z. (2013)., Effects of different reaction conditions on the synthesis of propylene carbonate. Org Chem Ind J. Vol: 9(12).
Yuichi Shinmoto, 2001, 4 - Vehicle optical sensor, Editor(s): Ljubo Vlacic, Michel Parent, Fumio Harashima, In Automotive Engineering Series, Intelligent Vehicle Technologies, Butterworth-Heinemann, Pages 87-112, ISBN 9780750650939, https://doi.org/10.1016/B978-075065093-9/50006-2.
Yunus, N. A. M., Halin, I. A., Sulaiman, N., Ismail, N. F., & Sheng, O. K. (2015). Valuation on MEMS Pressure Sensors and Device Applications. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 9(8).
Zhang, Y., Howver, R., Gogoi, B., & Yazdi, N. (2011, June). A high-sensitive ultra- thin MEMS capacitive pressure sensor. In 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (pp. 112-115). IEEE.
Zhuo, B., Chen, S., Zhao, M., & Guo, X. (2017). High sensitivity flexible capacitive pressure sensor using polydimethylsiloxane elastomer dielectric layer micro- structured by 3-D printed mold. IEEE Journal of the Electron Devices Society, 5(3), 219-223.
Zulfiqar, A., Pfreundt, A., Svendsen, W. E., & Dimaki, M. (2015). Fabrication of polyimide based microfluidic channels for biosensor devices. Journal of Micromechanics and Microengineering, 25(3), 035022.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |