UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QA Mathematics
Main Author :Munirah Bahari
Title :Pembinaan model peramalan siri masa suhu di Malaysia melalui pendekatan kalut
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
Kajian ini bertujuan membina model peramalan siri masa suhu di Malaysia yang dicerap   mengikut jam di Pulau Pinang, Johor, Melaka, Pahang, Perak dan Selangor menggunakan   pendekatan kalut. Secara spesifik, objektif utama kajian adalah untuk mengesan kehadiran   dinamik kalut, meramal siri masa suhu dan mengenal pasti pengaruh bilangan data terhadap   prestasi peramalan. Kaedah Cao dan plot ruang fasa digunakan dalam mengesan kehadiran   dinamik kalut. Dua langkah terlibat dalam meramal suhu iaitu pembinaan semula ruang fasa   dan proses peramalan. Sebelum melakukan peramalan, dua parameter perlu ditentukan iaitu   masa tunda, r dan matra pembenaman, m. Parameter r ditentukan melalui kaedah purata   maklumat bersama dan penetapan r =1. Parameter m dikira berdasarkan nilai E1(m) daripada   kaedah Cao. Tiga kaedah digunakan untuk pembinaan model peramalan iaitu kaedah   penghampiran purata setempat, kaedah penghampiran linear setempat dan kaedah   penambahbaikan penghampiran linear setempat. Bilangan data siri masa divariasikan untuk   mengenal pasti pengaruh bilangan data terhadap prestasi peramalan. Melalui kaedah Cao dan   plot ruang fasa, keputusan menunjukkan kehadiran dinamik kalut dalam siri masa   yang dikaji. Keputusan peramalan adalah cemerlang dengan nilai pekali kolerasi (pk)   menghampiri satu dan peramalan melalui model kalut adalah lebih baik berbanding model   tradisional regresi linear. Seterusnya, bilangan data tidak mempengaruhi nilai pk peramalan.   Secara kesimpulan, pendekatan kalut dapat diaplikasikan ke atas siri masa suhu di Malaysia.   Implikasinya, adalah diharapkan kajian ini dapat membantu Jabatan Meteorologi Malaysia   dan Jabatan Alam Sekitar dalam pengurusan peramalan perubahan suhu yang lebih baik di   Malaysia.

References

Abarbanel, H. D. I (1996). Analysis of observed chaotic data. New York: Springer-

 

Verlag.

 

 

 

Adenan, N. H., & Noorani, M. S. M. (2013). River flow prediction using nonlinear

 

prediction method. International Journal of Mathematical, Computational,

 

Physical, Electrical and Computer Engineering, 7(11), 62–66.

 

 

 

Adenan, N. H., Hamid, N. Z. A., Mohamed, Z., & Nooraini, M. S. M. (2017). A pilot

 

study of river flow prediction in urban area based on phase space reconstruction.

 

Proceedings of the 24th National Symposium on Mathematical Sciences (Vol.

 

1870).

 

 

 

Adenan, N. H,. & Noorani, M. S. M. (2015). Peramalan data siri masa aliran sungai di

 

dataran banjir dengan menggunakan pendekatan kalut. Sains Malaysiana, 44(3),

 

463–471.

 

 

 

Ali, N. M., & Hamid, N. Z. A. (2019). Chaotic analysis for Malaysian west coast sea

 

level : A case study of chaotic analysis for Malaysian west coast sea level : A

 

case study of Kukup, Johor. IOP Conf. Ser.: Earth Environ. Sci, 286(012022).

 

 

 

An, X., Jiang, D., Zhao, M., & Liu, C. (2012). Short-term prediction of wind power

 

using EMD and chaotic theory. Communications in Nonlinear Science and

 

Numerical Simulation, 17(2), 1036–1042.

 

 

 

Baboo, S. S., & Shereef, I. K. (2010). An efficient weather forecasting system using

 

artificial neural network. International Journal of Environmental Science and

 

Development, 1(4), 321.

 

 

 

Cao, L. (1997). Practical method for determining the minimum embedding dimension

 

of a scalar time series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50.

 

 

 

Casdagli, M. (1992). Chaos and deterministic versus stochastic non-linear modelling.

 

Journal of the Royal Statistical Society. Series B (Methodological), 54(2), 303–

 

328.

 

 

 

Chelani, A. B., & Devotta, S. (2006). Nonlinear analysis and prediction of coarse

 

particulate matter concentration in ambient air. Journal of the Air & Waste

 

Management Association, 56(1), 78–84.

 

 

 

Chen, K., Horton, R. M., Bader, D. A., Lesk, C., Jiang, L., Jones, B., et al (2017).

 

Impact of climate change on heat-related mortality in Jiangsu Province, China.

 

Environmental Pollution, 1–9.

 

 

 

Cheng, J., Xie, M. Y., Zhao, K. F., Wu, J. J., Xu, Z. W., Song, J., et al (2017). Impacts

 

of ambient temperature on the burden of bacillary dysentery in urban and rural

 

Hefei, China. Epidemiology and Infection, 145(8), 1567–1576.

 

 

 

Dhanya, C. T., & Kumar, D., N. (2011). Multivariate nonlinear ensemble prediction

 

of daily chaotic rainfall with climate inputs. Journal of Hydrology, 403(3–4),

 

292–306.

 

 

 

Domenico, M. D., Ghorbani, M. A., Makarynskyy, O., Makarynska, D., & Asadi, H.

 

(2013). Chaos and reproduction in sea level. Applied Mathematical Modelling,

 

37(6), 3687–3697.

 

 

 

Dotse, S., Dagar, L., Iskandar, M., & Silva, L. C. D. (2016). Influence of Southeast

 

Asian Haze episodes on high PM 10 concentrations across Brunei Darussalam.

 

Environmental Pollution, 219, 337-352.

 

 

 

Farmer, J., & Sidorowich, J. (1987). Predicting chaotic time series. Physical Review

 

Letters, (8), 845-848.

 

 

 

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange

 

attractors from mutual information, 33(2).

 

 

 

Fu, Q., Liu, Y., Li, T., Liu, D., & Cui, S. (2017). Analysis of irrigation water use

 

efficiency based on the chaos features of a rainfall time series. Water Resources

 

Management, 31(6), 1961–1973.

 

 

 

Hamid, N. Z. A., & Noorani, M. S. M. (2013). An improved prediction model of

 

ozone concentration time series based on chaotic approach. International Journal

 

of Mathematical, Computational Science and Engineering, 7(11), 206-211.

 

 

 

Hamid, N. Z. A. (2015). Pemodelan Siri Masa Kepekatan Bahan Pencemar Udara

 

O3 dan PM 10 dan Jerebu Menerusi Pendekatan Kalut. Universiti Kebangsaan

 

Malaysia, Bangi.

 

 

 

Hamid, N. Z. A. (2018). Application of chaotic approach in forecasting highland’ s

 

temperature time series. IOP Conference Series: Earth and Environmental

 

Science, 169, 012107.

 

 

 

Hamid, N. Z. A., Adenan, N. H., & Nooraini, M. S. M. (2017). Forecasting and

 

analyzing high O3 time series in educational area through an improved chaotic

 

approach. AIP Conference Proceedings 1870, 1870.

 

 

 

Hamid, N. Z. A., & Noorani, M. S. M. (2014). A pilot study using chaotic approach to

 

determine characteristics and forecasting of PM 10 concentration time series.

 

Sains Malaysiana, 43(3), 475-481.

 

 

 

Hashim, N., Man, S., Shapiee, R., & Ahmad, A. H. (2014). Anomali thermal indeks

 

bahangan dan pulau haba bandar semasa musim haji di Arab Saudi. Malaysian

 

Journal of Society and Space 10(5), 56-70.

 

 

 

Holzfuss, J., & Mayer-Kress, G. (1986). An approach to error estimation in the

 

application of dimension algorithms. Dimensions and Entropies in Chaotic

 

Systems Quantification of Complex Behavior, (1), 114–122.

 

 

 

Ibrahim, M. H., & Ismail, M. I. M. (2019). Suhu melampau jejas kesihatan. Diperoleh

 

daripada https://www.bharian.com.my/amp/rencana/muka10/2019/04

 

 

 

Ibrahim, M. H., Zulkifli, M. R., Ihsan, M., Ismail, M., Kalsum, N., Isa, M., & Adnan,

 

M. (2016). Impact of urbanization on temperature distribution in Malaysia: A

 

case study of Rawang, Selangor. Malaysian Journal of Society and Space, 12(5),

 

83–93.

 

 

 

Ibrahim, S., Sahlan, N. S., & Singh, M. S. J. (2016). Kajian hubung kait tekanan dan

 

suhu terhadap taburan kerpasan di Malaysia ketika fenomena ENSO. Jurnal

 

Kejuruteraan, 28, 53-64.

 

 

 

Indira, P., Stephen, R. I. S., Samuel, S. R., & Antony, S. A. (2016). Forecasting daily

 

maximum temperature of Chennai using nonlinear prediction approach. Indian

 

Journal of Science and Technology, 9(39).

 

 

 

Islam, M. N., & Sivakumar, B. (2002). Characterization and prediction of runoff

 

dynamics: A nonlinear dynamical view. Advances in Water Resources, 25(2),

 

179–190.

 

 

 

Jiffar S. (2019). Panas berpanjangan, pesawah terjejas. Diperolehi daripada

 

https://www.bharian.com.my/berita/wilayah/2019/03/536958

 

Kementerian Sumber Asli dan Alam Sekitar (NRE). (2016). Pelan strategik NRE

 

2016-2020.

 

 

 

Khatibi, R., Sivakumar, B., Ghorbani, M. A., Kisi, O., Koçak, K. & Farsadi, Z. D.

 

(2012). Investigating chaos in river stage and discharge time series. Journal of

 

Hydrology, 414–415, 108-117.

 

 

 

Li, T.-Y., & Yorke, J. A. (1975). Period three implies chaos. The American

 

Mathematical Monthly, 82(10), 985-992.

 

 

 

Liebert, W., & Schuster, H. (1989). Proper choice of the time delay for the analysis of

 

chaotic time series. Physics Letters A 142(2): 107-111.

 

 

 

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric

 

Sciences, 20(2), 130-141.

 

 

 

Malaysian Meteorological Department. (2018). Strategic plan Malaysian

 

Meteorological Department (2016-2020) (Review Edition), 1-26.

 

 

 

Noorani, M. S. M. (2012). Memahami dan menjinakkan kekalutan. Bangi: Penerbit

 

Universiti Kebangsaan Malaysia.

 

 

 

Pau, S., Wolkovich, E. M., Cook, B. I., Nytch, C. J., Regetz, J., Zimmerman, J. K., &

 

Joseph W. S. (2013). Clouds and temperature drive dynamic changes in tropical

 

flower production. Nature Climate Change, 3(7), 838-842.

 

 

 

Regonda, S., Rajagopalan, B., Lall, U., Clark, M., & Moon, Y.I. (2005). Local

 

polynomial method for ensemble forecast of time series. Nonlinear Processes in

 

Geophysics, 12, 397-406.

 

 

 

Ruslan, A. B., & Hamid, N. Z. A. (2019). Application of improved chaotic method in

 

determining number of k-nearest neighbor for CO data series. International

 

Journal of Engineering and Advanced Technology (6), 10-14.

 

 

 

Schmidt, G. A., Ruedy, R. A., Miller, R. L., & Lacis, A. A. (2010). Attribution of the

 

present day total greenhouse effect. Journal of Geophysical Research

 

115(March), 1-6.

 

 

 

Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate

 

use and interpretation, 1-6.

 

 

 

Seposo, X. T., Dang, T. N., & Honda, Y. (2015). Evaluating the effects of

 

temperature on mortality in Manila city (Philippines) from 2006-2010 using a

 

distributed lag nonlinear model. International Journal of Environmental

 

Research and Public Health, 12(6), 6842-6857.

 

 

 

Siek, M., & Solomatine, D. P. (2010). Nonlinear chaotic model for predicting storm

 

surges. Nonlinear Processes in Geophysics, 17(5), 405-420.

 

 

 

Siek, M. (2011). Predicting Storm Surges.

 

 

 

Sivakumar, B. (2002). A phase-space reconstruction approach to prediction of

 

suspended sediment concentration in rivers. Journal of Hydrology, 258(1-4),

 

149-162.

 

 

 

Srivalli, C. N. S., Jothiprakash, V., & Sivakumar, B. (2019). Complexity of

 

streamflows in the west-flowing rivers of India. Stochastic Environmental

 

Research and Risk Assessment, 3.

 

 

 

Suresh, A. A., & Selvaraj, R. S. (2017). A complete chaotic analysis on daily mean

 

surface air temperature and humidity data of Chennai. J. Ind. Geophys. Union,

 

21(4), 277-284.

 

 

 

Takens, F. (1981). Detecting strange attractor in turbulance. Dynamical Systems and

 

Turbulence (pp. 366–381).

 

 

 

Thinh, N. C., Shimono, H., Kumagai, E., & Kawasaki, M. (2017). Effects of elevated

 

CO 2 concentration on growth and photosynthesis of Chinese yam under

 

different temperature regimes. Plant Production Science, 1008(March), 1-10.

 

 

 

Tol, R. S. J. (2018). The economic impacts of climate change. Review of

 

Environmental Economics and Policy, 12(1), 4-25.

 

 

 

Velickov, S. (2004). Nonlinear Dynamics and Chaos with Applications to

 

Hydrodynamics and Hydrological Modelling. Delft University of Technology,

 

Netherlnds.

 

 

 

Wichmann, J. (2017). Heat effects of ambient apparent temperature on all cause

 

mortality in Cape Town, Durban and Johannesburg, South Africa: 2006-2010.

 

Science of the Total Environment, 587-588, 266-272.

 

 

 

Za’im W. N. A. (2018). Peramalan siri masa ozon mengikut monsun di kawasan

 

pendidikan tinggi di Malaysia dengan menggunakan pendekatan kalut.

 

Universiti Pendidikan Sultan Idris, Perak.

 

 

 

Zeng, J., Lu, C., & Deng, Q. (2017). Prenatal exposure to diurnal temperature

 

variation and early childhood pneumonia. Journal of Thermal Biology,

 

65(February), 105-112.

 

 

 

Zhang, L., Tian, F., Liu, S., Dang, L., Peng, X., & Yin, X. (2013). Chaotic time series

 

prediction of E-nose sensor drift in embedded phase space. Sensors and

 

Actuators, B: Chemical, 182, 71-79.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.