UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Kajian ini bertujuan membina model peramalan siri masa suhu di Malaysia yang dicerap
mengikut jam di Pulau Pinang, Johor, Melaka, Pahang, Perak dan Selangor menggunakan
pendekatan kalut. Secara spesifik, objektif utama kajian adalah untuk mengesan kehadiran
dinamik kalut, meramal siri masa suhu dan mengenal pasti pengaruh bilangan data terhadap
prestasi peramalan. Kaedah Cao dan plot ruang fasa digunakan dalam mengesan kehadiran
dinamik kalut. Dua langkah terlibat dalam meramal suhu iaitu pembinaan semula ruang fasa
dan proses peramalan. Sebelum melakukan peramalan, dua parameter perlu ditentukan iaitu
masa tunda, r dan matra pembenaman, m. Parameter r ditentukan melalui kaedah purata
maklumat bersama dan penetapan r =1. Parameter m dikira berdasarkan nilai E1(m) daripada
kaedah Cao. Tiga kaedah digunakan untuk pembinaan model peramalan iaitu kaedah
penghampiran purata setempat, kaedah penghampiran linear setempat dan kaedah
penambahbaikan penghampiran linear setempat. Bilangan data siri masa divariasikan untuk
mengenal pasti pengaruh bilangan data terhadap prestasi peramalan. Melalui kaedah Cao dan
plot ruang fasa, keputusan menunjukkan kehadiran dinamik kalut dalam siri masa
yang dikaji. Keputusan peramalan adalah cemerlang dengan nilai pekali kolerasi (pk)
menghampiri satu dan peramalan melalui model kalut adalah lebih baik berbanding model
tradisional regresi linear. Seterusnya, bilangan data tidak mempengaruhi nilai pk peramalan.
Secara kesimpulan, pendekatan kalut dapat diaplikasikan ke atas siri masa suhu di Malaysia.
Implikasinya, adalah diharapkan kajian ini dapat membantu Jabatan Meteorologi Malaysia
dan Jabatan Alam Sekitar dalam pengurusan peramalan perubahan suhu yang lebih baik di
Malaysia. |
References |
Abarbanel, H. D. I (1996). Analysis of observed chaotic data. New York: Springer-
Verlag.
Adenan, N. H., & Noorani, M. S. M. (2013). River flow prediction using nonlinear
prediction method. International Journal of Mathematical, Computational,
Physical, Electrical and Computer Engineering, 7(11), 62–66.
Adenan, N. H., Hamid, N. Z. A., Mohamed, Z., & Nooraini, M. S. M. (2017). A pilot
study of river flow prediction in urban area based on phase space reconstruction.
Proceedings of the 24th National Symposium on Mathematical Sciences (Vol.
1870).
Adenan, N. H,. & Noorani, M. S. M. (2015). Peramalan data siri masa aliran sungai di
dataran banjir dengan menggunakan pendekatan kalut. Sains Malaysiana, 44(3),
463–471.
Ali, N. M., & Hamid, N. Z. A. (2019). Chaotic analysis for Malaysian west coast sea
level : A case study of chaotic analysis for Malaysian west coast sea level : A
case study of Kukup, Johor. IOP Conf. Ser.: Earth Environ. Sci, 286(012022).
An, X., Jiang, D., Zhao, M., & Liu, C. (2012). Short-term prediction of wind power
using EMD and chaotic theory. Communications in Nonlinear Science and
Numerical Simulation, 17(2), 1036–1042.
Baboo, S. S., & Shereef, I. K. (2010). An efficient weather forecasting system using
artificial neural network. International Journal of Environmental Science and
Development, 1(4), 321.
Cao, L. (1997). Practical method for determining the minimum embedding dimension
of a scalar time series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50.
Casdagli, M. (1992). Chaos and deterministic versus stochastic non-linear modelling.
Journal of the Royal Statistical Society. Series B (Methodological), 54(2), 303–
328.
Chelani, A. B., & Devotta, S. (2006). Nonlinear analysis and prediction of coarse
particulate matter concentration in ambient air. Journal of the Air & Waste
Management Association, 56(1), 78–84.
Chen, K., Horton, R. M., Bader, D. A., Lesk, C., Jiang, L., Jones, B., et al (2017).
Impact of climate change on heat-related mortality in Jiangsu Province, China.
Environmental Pollution, 1–9.
Cheng, J., Xie, M. Y., Zhao, K. F., Wu, J. J., Xu, Z. W., Song, J., et al (2017). Impacts
of ambient temperature on the burden of bacillary dysentery in urban and rural
Hefei, China. Epidemiology and Infection, 145(8), 1567–1576.
Dhanya, C. T., & Kumar, D., N. (2011). Multivariate nonlinear ensemble prediction
of daily chaotic rainfall with climate inputs. Journal of Hydrology, 403(3–4),
292–306.
Domenico, M. D., Ghorbani, M. A., Makarynskyy, O., Makarynska, D., & Asadi, H.
(2013). Chaos and reproduction in sea level. Applied Mathematical Modelling,
37(6), 3687–3697.
Dotse, S., Dagar, L., Iskandar, M., & Silva, L. C. D. (2016). Influence of Southeast
Asian Haze episodes on high PM 10 concentrations across Brunei Darussalam.
Environmental Pollution, 219, 337-352.
Farmer, J., & Sidorowich, J. (1987). Predicting chaotic time series. Physical Review
Letters, (8), 845-848.
Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange
attractors from mutual information, 33(2).
Fu, Q., Liu, Y., Li, T., Liu, D., & Cui, S. (2017). Analysis of irrigation water use
efficiency based on the chaos features of a rainfall time series. Water Resources
Management, 31(6), 1961–1973.
Hamid, N. Z. A., & Noorani, M. S. M. (2013). An improved prediction model of
ozone concentration time series based on chaotic approach. International Journal
of Mathematical, Computational Science and Engineering, 7(11), 206-211.
Hamid, N. Z. A. (2015). Pemodelan Siri Masa Kepekatan Bahan Pencemar Udara
O3 dan PM 10 dan Jerebu Menerusi Pendekatan Kalut. Universiti Kebangsaan
Malaysia, Bangi.
Hamid, N. Z. A. (2018). Application of chaotic approach in forecasting highland’ s
temperature time series. IOP Conference Series: Earth and Environmental
Science, 169, 012107.
Hamid, N. Z. A., Adenan, N. H., & Nooraini, M. S. M. (2017). Forecasting and
analyzing high O3 time series in educational area through an improved chaotic
approach. AIP Conference Proceedings 1870, 1870.
Hamid, N. Z. A., & Noorani, M. S. M. (2014). A pilot study using chaotic approach to
determine characteristics and forecasting of PM 10 concentration time series.
Sains Malaysiana, 43(3), 475-481.
Hashim, N., Man, S., Shapiee, R., & Ahmad, A. H. (2014). Anomali thermal indeks
bahangan dan pulau haba bandar semasa musim haji di Arab Saudi. Malaysian
Journal of Society and Space 10(5), 56-70.
Holzfuss, J., & Mayer-Kress, G. (1986). An approach to error estimation in the
application of dimension algorithms. Dimensions and Entropies in Chaotic
Systems Quantification of Complex Behavior, (1), 114–122.
Ibrahim, M. H., & Ismail, M. I. M. (2019). Suhu melampau jejas kesihatan. Diperoleh
daripada https://www.bharian.com.my/amp/rencana/muka10/2019/04
Ibrahim, M. H., Zulkifli, M. R., Ihsan, M., Ismail, M., Kalsum, N., Isa, M., & Adnan,
M. (2016). Impact of urbanization on temperature distribution in Malaysia: A
case study of Rawang, Selangor. Malaysian Journal of Society and Space, 12(5),
83–93.
Ibrahim, S., Sahlan, N. S., & Singh, M. S. J. (2016). Kajian hubung kait tekanan dan
suhu terhadap taburan kerpasan di Malaysia ketika fenomena ENSO. Jurnal
Kejuruteraan, 28, 53-64.
Indira, P., Stephen, R. I. S., Samuel, S. R., & Antony, S. A. (2016). Forecasting daily
maximum temperature of Chennai using nonlinear prediction approach. Indian
Journal of Science and Technology, 9(39).
Islam, M. N., & Sivakumar, B. (2002). Characterization and prediction of runoff
dynamics: A nonlinear dynamical view. Advances in Water Resources, 25(2),
179–190.
Jiffar S. (2019). Panas berpanjangan, pesawah terjejas. Diperolehi daripada
https://www.bharian.com.my/berita/wilayah/2019/03/536958
Kementerian Sumber Asli dan Alam Sekitar (NRE). (2016). Pelan strategik NRE
2016-2020.
Khatibi, R., Sivakumar, B., Ghorbani, M. A., Kisi, O., Koçak, K. & Farsadi, Z. D.
(2012). Investigating chaos in river stage and discharge time series. Journal of
Hydrology, 414–415, 108-117.
Li, T.-Y., & Yorke, J. A. (1975). Period three implies chaos. The American
Mathematical Monthly, 82(10), 985-992.
Liebert, W., & Schuster, H. (1989). Proper choice of the time delay for the analysis of
chaotic time series. Physics Letters A 142(2): 107-111.
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20(2), 130-141.
Malaysian Meteorological Department. (2018). Strategic plan Malaysian
Meteorological Department (2016-2020) (Review Edition), 1-26.
Noorani, M. S. M. (2012). Memahami dan menjinakkan kekalutan. Bangi: Penerbit
Universiti Kebangsaan Malaysia.
Pau, S., Wolkovich, E. M., Cook, B. I., Nytch, C. J., Regetz, J., Zimmerman, J. K., &
Joseph W. S. (2013). Clouds and temperature drive dynamic changes in tropical
flower production. Nature Climate Change, 3(7), 838-842.
Regonda, S., Rajagopalan, B., Lall, U., Clark, M., & Moon, Y.I. (2005). Local
polynomial method for ensemble forecast of time series. Nonlinear Processes in
Geophysics, 12, 397-406.
Ruslan, A. B., & Hamid, N. Z. A. (2019). Application of improved chaotic method in
determining number of k-nearest neighbor for CO data series. International
Journal of Engineering and Advanced Technology (6), 10-14.
Schmidt, G. A., Ruedy, R. A., Miller, R. L., & Lacis, A. A. (2010). Attribution of the
present day total greenhouse effect. Journal of Geophysical Research
115(March), 1-6.
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate
use and interpretation, 1-6.
Seposo, X. T., Dang, T. N., & Honda, Y. (2015). Evaluating the effects of
temperature on mortality in Manila city (Philippines) from 2006-2010 using a
distributed lag nonlinear model. International Journal of Environmental
Research and Public Health, 12(6), 6842-6857.
Siek, M., & Solomatine, D. P. (2010). Nonlinear chaotic model for predicting storm
surges. Nonlinear Processes in Geophysics, 17(5), 405-420.
Siek, M. (2011). Predicting Storm Surges.
Sivakumar, B. (2002). A phase-space reconstruction approach to prediction of
suspended sediment concentration in rivers. Journal of Hydrology, 258(1-4),
149-162.
Srivalli, C. N. S., Jothiprakash, V., & Sivakumar, B. (2019). Complexity of
streamflows in the west-flowing rivers of India. Stochastic Environmental
Research and Risk Assessment, 3.
Suresh, A. A., & Selvaraj, R. S. (2017). A complete chaotic analysis on daily mean
surface air temperature and humidity data of Chennai. J. Ind. Geophys. Union,
21(4), 277-284.
Takens, F. (1981). Detecting strange attractor in turbulance. Dynamical Systems and
Turbulence (pp. 366–381).
Thinh, N. C., Shimono, H., Kumagai, E., & Kawasaki, M. (2017). Effects of elevated
CO 2 concentration on growth and photosynthesis of Chinese yam under
different temperature regimes. Plant Production Science, 1008(March), 1-10.
Tol, R. S. J. (2018). The economic impacts of climate change. Review of
Environmental Economics and Policy, 12(1), 4-25.
Velickov, S. (2004). Nonlinear Dynamics and Chaos with Applications to
Hydrodynamics and Hydrological Modelling. Delft University of Technology,
Netherlnds.
Wichmann, J. (2017). Heat effects of ambient apparent temperature on all cause
mortality in Cape Town, Durban and Johannesburg, South Africa: 2006-2010.
Science of the Total Environment, 587-588, 266-272.
Za’im W. N. A. (2018). Peramalan siri masa ozon mengikut monsun di kawasan
pendidikan tinggi di Malaysia dengan menggunakan pendekatan kalut.
Universiti Pendidikan Sultan Idris, Perak.
Zeng, J., Lu, C., & Deng, Q. (2017). Prenatal exposure to diurnal temperature
variation and early childhood pneumonia. Journal of Thermal Biology,
65(February), 105-112.
Zhang, L., Tian, F., Liu, S., Dang, L., Peng, X., & Yin, X. (2013). Chaotic time series
prediction of E-nose sensor drift in embedded phase space. Sensors and
Actuators, B: Chemical, 182, 71-79. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |