UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :T Technology
H Social Sciences (General)
H Social Sciences
ISSN :2071-1050
Main Author :Suriani binti Abu Bakar
Title :Low nickel, ceria zirconia-based micro-tubular solid oxide fuel cell: A study of composition and oxidation using hydrogen and methane fuel
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
The study examines the effect of using low nickel (Ni) with high ceria (CeO2) anode content towards the oxidation of H2 and CH4 fuel by evaluating the activation energy of the ohmic process and charge transfer process. Using a micro-tubular solid oxide fuel cell (MT-SOFC), the anodes are made up of 50% YSZ with varying NiO:CeO2 percentages from 0% NiO, 50% CeO2 to 50% NiO, 0% CeO2. The performance is measured based on maximum power density (MPD), electrochemical impedance spectroscopy (EIS) and activation energy, Ea of the ohmic (Rohm) and charge transfer (Rct) processes. We found that by lowering the Ni content to lower than 50% NiO, anode conductivity will drop by 7-fold. An anode containing 37.5% NiO, 12.5% CeO2 yield MPD of 41.1 and 2.9 mW cm−2 when tested on H2 and CH4 fuels thus have the lowest Ni content without an abrupt negative effect on the MPD and EIS. The significant effect of conductivity drops on MPD and EIS are observed to occur at 25% NiO, 25% CeO2 and lower NiO content. However, anode content of 25% NiO, 25% CeO2 has the lowest Ea for Rct (29.74 kJ mol−1) for operation in CH4, making it the best anode composition to oxidize CH4. As a conclusion, an anode containing 25% NiO:25% CeO2:50% YSZ and 37.5% NiO:12.5% CeO2:50% YSZ shows promising results in becoming the low Ni anode for coking-tolerant SOFC.

References

1. Ades, M.; Adler, R.; Allan, R.; Anderson, J.; Argüez, A.; Arosio, C.; Augustine, J.A.; Azorin-Molina, C.; Barichivich, J.; Barnes, J.;et al. Global Climate. Bull. Am. Meteorol. Soc. 2020, 101, S9–S128. [CrossRef]

2. Shabri, H.A.; Othman, M.H.D.; Mohamed, M.A.; Kurniawan, T.A.; Jamil, S.M. Recent progress in metal-ceramic anode of solidoxide fuel cell for direct hydrocarbon fuel utilization: A review. Fuel Process. Technol. 2021, 212, 106626. [CrossRef]

3. Ahmed, S.; Aitani, A.; Rahman, F.; Al-Dawood, A.; Al-Muhaish, F. Decomposition of hydrocarbons to hydrogen and carbon. Appl.Catal. A Gen. 2009, 359, 1–24. [CrossRef]

4. Lee, J.; Theis, J.R.; Kyriakidou, E.A. Vehicle emissions trapping materials: Successes, challenges, and the path forward. Appl.Catal. B Environ. 2019, 243, 397–414. [CrossRef]

5. Hartvigsen, J.; Elangovan, S.; Elwell, J.; Larsen, D. Oxygen Production from Mars Atmosphere Carbon Dioxide Using Solid Oxide Electrolysis. ECS Trans. 2017, 78, 2953–2963. [CrossRef]

6. Lee, J.G.; Jeon, O.S.; Hwang, H.J.; Jang, J.; Lee, Y.; Hyun, S.H.; Shul, Y.G. Durable and High-Performance Direct-Methane Fuel Cells with Coke-Tolerant Ceria-Coated Ni Catalysts at Reduced Temperatures. Electrochim. Acta 2016, 191, 677–686. [CrossRef]

7. Lee, D.; Myung, J.; Tan, J.; Hyun, S.-H.; Irvine, J.T.; Kim, J.; Moon, J. Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. J. Power Sources 2017, 345, 30–40. [CrossRef]

8. Omar, A.F.; Othman, M.H.D.; Gunaedi, C.N.; Jamil, S.M.; Mohamed, M.H.; Jaafar, J.; Rahman, M.A.; Ismail, A.F. Performance analysis of hollow fibre-based micro-tubular solid oxide fuel cell utilising methane fuel. Int. J. Hydrogen Energy 2019, 44,30754–30762. [CrossRef]

9. Riegraf, M.; Dierickx, S.; Weber, A.; Costa, R.; Schiller, G.; Friedrich, K.A. Electrochemical Impedance Analysis of Ni/CGO10-Based Electrolyte-Supported Cells. ECS Trans. 2019, 91, 1985–1992. [CrossRef]

10. Osinkin, D. Complementary effect of ceria on the hydrogen oxidation kinetics on Ni—Ce0.8Sm0.2O2-δ anode. Electrochim. Acta 2020, 330, 135257. [CrossRef]

11. Öksüzömer, M.F.; Sarıbo ˘ga, V. Combined Cu-CeO2/YSZ and Ni/YSZ dual layer anode structures for direct methane solid oxide fuel cells. Int. J. Energy Res. 2018, 42, 3228–3243. [CrossRef]

12. Rabuni, M.F.; Li, T.; Punmeechao, P.; Li, K. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC).J. Power Sources 2018, 384, 287–294. [CrossRef]

13. Sumi, H.; Shimada, H.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Development of Portable Solid Oxide Fuel Cell System Driven by Hydrocarbon and Alcohol Fuels. Adv. Bioceram. Porous Ceram. II 2019, 39, 159–163.

14. Ab Rahman, M.; Othman, M.H.D.; Wibisono, Y.; Harun, Z.; Omar, A.F.; Shabri, H.A.; Deraman, S.; Rahman, M.A.; Jaafar, J.; Ismail, A.F. Effect of electrolyte thickness manipulation on enhancing carbon deposition resistance of methane-fueled solid oxide fuel cell. Int. J. Energy Res. 2021, 45, 2837–2855. [CrossRef]

15. Ab Rahman, M.; Othman, M.H.D.; Fansuri, H.; Harun, Z.; Omar, A.F.; Shabri, H.A.; Ravi, J.; Rahman, M.A.; Jaafar, J.; Ismail, A.F.;et al. Development of high-performance anode/electrolyte/cathode micro-tubular solid oxide fuel cell via phase inversion-based co-extrusion/co-sintering technique. J. Power Sources 2020, 467, 228345. [CrossRef]

16. Jamil, S.M.; Rahman, M.A.; Shabri, H.A.; Othman, M.H.D. Solid Electrolyte Membranes for Low- and High-Temperature Fuel Cells. In Membrane Technology Enhancement for Environmental Protection and Sustainable Industrial Growth; Zhang, Z., Zhang, W.,Chehimi, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 109–125.

17. Eguchi, K.; Akasaka, N.; Mitsuyasu, H.; Nonaka, Y. Process of solid state reaction between doped ceria and zirconia. Solid State Ionics 2000, 135, 589–594. [CrossRef]

18. Tuller, H. Ionic conduction in nanocrystalline materials. Solid State Ionics 2000, 131, 143–157. [CrossRef]

19. Chen, J.; Carlson, B.D.; Toops, T.J.; Li, Z.; Lance, M.J.; Karakalos, S.G.; Choi, J.; Kyriakidou, E.A. Methane Combustion Over Ni/CexZr1−xO2 Catalysts: Impact of Ceria/Zirconia Ratio. ChemCatChem 2020, 12, 5558–5568.

20. Xu, H.; Cheng, K.; Chen, M.; Zhang, L.; Brodersen, K.; Du, Y. Interdiffusion between gadolinia doped ceria and yttria stabilized zirconia in solid oxide fuel cells: Experimental investigation and kinetic modeling. J. Power Sources 2019, 441, 227152. [CrossRef]

21. Kurapova, O.Y.; Shugurov, S.M.; Vasil’Eva, E.A.; Savelev, D.A.; Konakov, V.G.; Lopatin, S.I. Thermal prehistory, structure and hightemperature thermodynamic properties of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions. Ceram. Int. 2021, 47, 11072–11079.

22. Danielis, M.; Betancourt, L.E.; Orozco, I.; Divins, N.J.; Llorca, J.; Rodríguez, J.A.; Senanayake, S.D.; Colussi, S.; Trovarelli, A.Methane oxidation activity and nanoscale characterization of Pd/CeO2 catalysts prepared by dry milling Pd acetate and ceria. Appl. Catal. B Environ. 2021, 282, 119567. [CrossRef]

23. Liu, Z.; Zhang, F.; Rui, N.; Li, X.; Lin, L.; Betancourt, L.E.; Su, D.; Xu, W.; Cen, J.; Attenkofer, K.; et al. Highly Active CeriaSupported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ruδ+–Ce3+ Interactions for Enhanced Conversion. ACS Catal. 2019, 9, 3349–3359. [CrossRef]

24. Ahmad, S.I.; Rao, P.K.; Syed, I.A. Sintering temperature effect on density, structural and morphological properties of Mg- and Sr-doped ceria. J. Taibah Univ. Sci. 2016, 10, 381–385. [CrossRef]

25. Panthi, D.; Hedayat, N.; Du, Y. Densification behavior of yttria-stabilized zirconia powders for solid oxide fuel cell electrolytes.J. Adv. Ceram. 2018, 7, 325–335. [CrossRef]

26. Saribo ˘ga, V.; Öksüzömer, M.F. Cu-CeO2 anodes for solid oxide fuel cells: Determination of infiltration characteristics. J. Alloys Compd. 2016, 688, 323–331. [CrossRef]

27. Zhou, X. Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ionics 2004,175, 19–22. [CrossRef]

28. Mori, M.; Yamamoto, T.; Itoh, H.; Inaba, H.; Tagawa, H. Thermal Expansion of Nickel-Zirconia Anodes in Solid Oxide Fuel Cells during Fabrication and Operation. J. Electrochem. Soc. 1998, 145, 1374–1381. [CrossRef]

29. Wang, X.; Liu, T.; Wang, C.; Yu, J.; Li, L. Crystal structure, microstructure, thermal expansion and electrical conductivity of CeO2–ZrO2 solid solution. Adv. Appl. Ceram. 2017, 116, 477–481. [CrossRef]

30. Jamil, S.M.; Othman, M.H.D.; Rahman, M.A.; Jaafar, J.; Ismail, A.F.; Honda, S.; Iwamoto, Y. Properties and performance evaluation of dual-layer ceramic hollow fiber with modified electrolyte for MT-SOFC. Renew. Energy 2019, 134, 1423–1433. [CrossRef]

31. Feng, J.; Qiao, J.; Sun, W.; Yang, P.; Li, H.; Wang, Z.; Sun, K. Characteristic and preparation of Ce0.5Zr0.5O2 as the anode support for solid oxide fuel cells by phase inversion technology. Int. J. Hydrogen Energy 2015, 40, 12784–12789. [CrossRef]

32. Dees, D.W.; Claar, T.D.; Easler, T.E.; Fee, D.C.; Mrazek, F.C. ChemInform Abstract: The Conductivity of Porous Ni/ZrO2-Y2O3 Cermets. Chemin 1987, 18, 5–10. [CrossRef]

33. Yu, J.H.; Park, G.W.; Lee, S.; Woo, S.K. Microstructural effects on the electrical and mechanical properties of Ni–YSZ cermet for SOFC anode. J. Power Sources 2007, 163, 926–932. [CrossRef]

34. Sasaki, K.; Teraoka, Y. Equilibria in Fuel Cell Gases. J. Electrochem. Soc. 2003, 150, A885–A888. 

35. Shishkin, M.; Ziegler, T. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: A critical overview. Phys. Chem. Chem. Phys. 2014, 16, 1798–1808. [CrossRef] [PubMed]

36. Vita, A. Catalytic Applications of CeO2-Based Materials. Catalysts 2020, 10, 576. 

37. Shutilov, A.A.; Simonov, M.N.; Zaytseva, Y.A.; Zenkovets, G.A.; Simakova, I. Phase composition and catalytic properties of ZrO2 and CeO2-ZrO2 in the ketonization of pentanoic acid to 5-nonanone. Kinet. Catal. 2013, 54, 184–192. [CrossRef]

38. Coles-Aldridge, A.V.; Baker, R.T. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium. Solid State Ionics 2020, 347, 115255. [CrossRef]

39. Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-8932-0.

40. Luciani, G.; Landi, G.; Imparato, C.; Vitiello, G.; Deorsola, F.A.; Di Benedetto, A.; Aronne, A. Improvement of splitting performance of Ce0.75Zr0.25O2 material: Tuning bulk and surface properties by hydrothermal synthesis. Int. J. Hydrogen Energy 2019, 44,17565–17577. [CrossRef]

41. Deng, J.; Li, S.; Xiong, L.; Jiao, Y.; Yuan, S.; Wang, J.; Chen, Y. Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Appl. Surf. Sci. 2020, 505, 144301. [CrossRef]

42. Shishkin, M.; Ziegler, T. The Electronic Structure and Chemical Properties of a Ni/CeO2 Anode in a Solid Oxide Fuel Cell: A DFT+ U Study. J. Phys. Chem. C 2010, 114, 21411–21416. [CrossRef]

43. Escudero, M.; Serrano, J. Individual impact of several impurities on the performance of direct internal reforming biogas solid oxide fuel cell using W-Ni-CeO2 as anode. Int. J. Hydrogen Energy 2019, 44, 20616–20631. [CrossRef]

44. Hou, X.; Zhao, K.; Marina, O.A.; Norton, M.G.; Ha, S. NiMo-ceria-zirconia-based anode for solid oxide fuel cells operating on gasoline surrogate. Appl. Catal. B Environ. 2019, 242, 31–39. [CrossRef]

45. Fuerte, A.; Valenzuela, R.X.; Escudero, M.J. Role of Dopants on Ceria-based Anodes for IT-SOFCs Powered by Hydrocarbon Fuels. Univers. J. Electr. Electron. Eng. 2017, 5, 45–55. [CrossRef]

46. Rudin, S.N.F.M.; Ab Muis, Z.; Ramli, A.F.; Shabri, H.A.; Zailan, R.; Hashim, H.; Ho, W.S. Sustainable Supply of Hydrogen for Integrated Power Plant with Methanation via Pinch Analysis. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 884. [CrossRef]

47. Rudin, S.N.F.M.; Ab Muis, Z.; Hashim, H.; Ho, W.S. Techno-economic assessment of integrated power plant with methanation. Chem. Eng. Trans. 2018, 63, 451–456.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.