UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :GF Human ecology. Anthropogeography
ISSN :2352-1864
Main Author :Che Zalina Zulkifli
Title :A review of nanotechnological applications to detect and control surface water pollution
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
Surface water is extremely susceptible to pollution stemming from human activities, such as the expansion of urban and suburban areas, industries, cities, and agriculture. In fact, sources of surface water have become the most common discharge sites for wastewater, which may contain microorganisms, pharmaceutical waste, heavy metals, and harmful pollutants. As a reference standard for clean water, the water quality standards and index of Malaysia were used. In comparison with conventional wastewater treatment methods, new nanomaterial-based methods for water filtration and purification are drawing attention as more efficient methods for water pollution detection and treatment. This prompts the use of nanotechnology applications to control surface water pollution and quality, as surface water is the main source of water consumption for humans, animals, and plants. This paper reviewed the application of nanotechnology for the detection and treatment of surface water pollution to ensure the sustainability of a green environment. This paper also highlighted the application of nanotechnology, namely, nanofiltration membranes, photocatalysis, plasma discharge, and nano-adsorbents, in wastewater treatment, as well as the application of nano-sensors for monitoring surface water quality. The integration of nano-adsorbents in the conventional technology may increase treatment efficiency because nano-adsorbents have demonstrated remarkable performance in the removal of contaminants in wastewater. The hurdles, challenges, and outlook of nanotechnology for wastewater treatment were addressed in this review. The insights presented in this paper may provide opportunities and directions to expand studies pertaining to the applications of nanotechnology for future surface water treatment.

References

Surface water quality regulation in EECCA countries: Directions for reform 1–13. (2008). Retrieved from www.scopus.com

Ahmad, R. (2017). US water regulations and india's water challenges. Journal - American Water Works Association, 109(3), 64-67. doi:10.5942/jawwa.2017.109.0041

Ajo, P., Kornev, I., & Preis, S. (2017). Pulsed corona discharge induced hydroxyl radical transfer through the gas-liquid interface. Scientific Reports, 7(1) doi:10.1038/s41598-017-16333-1

Andersson, K., Lawrence, D., Zavaleta, J., & Guariguata, M. R. (2016). More trees, more poverty? the socioeconomic effects of tree plantations in chile, 2001–2011. Environmental Management, 57(1), 123-136. doi:10.1007/s00267-015-0594-x

Andrade, M. B., Santos, T. R. T., Fernandes Silva, M., Vieira, M. F., Bergamasco, R., & Hamoudi, S. (2019). Graphene oxide impregnated with iron oxide nanoparticles for the removal of atrazine from the aqueous medium. Separation Science and Technology (Philadelphia), 54(16), 2653-2670. doi:10.1080/01496395.2018.1549077

Anovitz, L. M., & Cole, D. R. (2015). Characterization and analysis of porosity and pore structures doi:10.2138/rmg.2015.80.04 Retrieved from www.scopus.com

Barra Caracciolo, A., Grenni, P., Rauseo, J., Ademollo, N., Cardoni, M., Rolando, L., & Patrolecco, L. (2018). Degradation of a fluoroquinolone antibiotic in an urbanized stretch of the river tiber. Microchemical Journal, 136, 43-48. doi:10.1016/j.microc.2016.12.008

Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483-493. doi:10.1016/j.envres.2018.11.040

Bilibana, M. P., Williams, A. R., Rassie, C., Sunday, C. E., Makelane, H., Wilson, L., . . . Iwuoha, E. I. (2016). Electrochemical aptatoxisensor responses on nanocomposites containing electro-deposited silver nanoparticles on poly(propyleneimine) dendrimer for the detection of microcystin-LR in freshwater. Sensors (Switzerland), 16(11) doi:10.3390/s16111901

Bogaerts, A., Neyts, E., Gijbels, R., & Van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta - Part B Atomic Spectroscopy, 57(4), 609-658. doi:10.1016/S0584-8547(01)00406-2

Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. Npj Clean Water, 2(1) doi:10.1038/s41545-019-0039-9

Borges, M. E., Sierra, M., Cuevas, E., García, R. D., & Esparza, P. (2016). Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Solar Energy, 135, 527-535. doi:10.1016/j.solener.2016.06.022

Boutamine, Z., Hamdaoui, O., & Merouani, S. (2018). Sonochemical and photosonochemical degradation of endocrine disruptor 2-phenoxyethanol in aqueous media. Separation and Purification Technology, 206, 356-364. doi:10.1016/j.seppur.2018.06.010

Brisset, J. -., Fanmoe, J., & Hnatiuc, E. (2016). Degradation of surfactant by cold plasma treatment. Journal of Environmental Chemical Engineering, 4(1), 385-387. doi:10.1016/j.jece.2015.11.011

Britannica, E. (2020). Editors of encyclopaedia 2020, march 31. Groundwater.Encycl.Br., , 1-3. Retrieved from www.scopus.com

Candela, L. (2018). Components and structure., 1-15. Retrieved from www.scopus.com

Ceretta, M. B., Vieira, Y., Wolski, E. A., Foletto, E. L., & Silvestri, S. (2020). Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. Journal of Water Process Engineering, 35 doi:10.1016/j.jwpe.2020.101230

Chekir, N., Benhabiles, O., Tassalit, D., Laoufi, N. A., & Bentahar, F. (2016). Photocatalytic degradation of methylene blue in aqueous suspensions using TiO2 and ZnO. Desalination and Water Treatment, 57(13), 6141-6147. doi:10.1080/19443994.2015.1060533

Chekli, L., Galloux, J., Zhao, Y. X., Gao, B. Y., & Shon, H. K. (2015). Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and iron salts in humic acid-kaolin synthetic water treatment. Separation and Purification Technology, 142, 155-161. doi:10.1016/j.seppur.2014.12.043

Chen, F., Huang, X., Cheng, D. -., & Zhan, X. (2014). Hydrogen production from alcohols and ethers via cold plasma: A review. International Journal of Hydrogen Energy, 39(17), 9036-9046. doi:10.1016/j.ijhydene.2014.03.194

Cheng, H. -., Chen, S. -., Yoshizuka, K., & Chen, Y. -. (2012). Degradation of phenolic compounds in water by non-thermal plasma treatment. Journal of Water Chemistry and Technology, 34(4), 179-189. doi:10.3103/S1063455X12040030

Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027. doi:10.1016/j.watres.2010.02.039

Chowdhary, P., Raj, A., & Bharagava, R. N. (2018). Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere, 194, 229-246. doi:10.1016/j.chemosphere.2017.11.163

Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9(4), 441-454. doi:10.1088/0963-0252/9/4/301

Dasgupta, N., Ranjan, S., & Ramalingam, C. (2017). Applications of nanotechnology in agriculture and water quality management. Environmental Chemistry Letters, 15(4), 591-605. doi:10.1007/s10311-017-0648-9

Davis, J. A., Kerezsy, A., & Nicol, S. (2017). Springs: Conserving perennial water is critical in arid landscapes. Biological Conservation, 211, 30-35. doi:10.1016/j.biocon.2016.12.036

Department of Environment. (2016). National water quality standard of malaysia. Retrieved from www.scopus.com

Di Natale, F., Gargiulo, V., & Alfè, M. (2020). Adsorption of heavy metals on silica-supported hydrophilic carbonaceous nanoparticles (SHNPs). Journal of Hazardous Materials, 393 doi:10.1016/j.jhazmat.2020.122374

Ding, S. -., Wang, X. -., Jiang, W. -., Zhao, R. -., Shen, T. -., Wang, C., & Wang, X. (2015). Influence of pH, inorganic anions, and dissolved organic matter on the photolysis of antimicrobial triclocarban in aqueous systems under simulated sunlight irradiation. Environmental Science and Pollution Research, 22(7), 5204-5211. doi:10.1007/s11356-014-3686-x

Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk, J., & Van De Giesen, N. (2016). Earth's surface water change over the past 30 years. Nature Climate Change, 6(9), 810-813. doi:10.1038/nclimate3111

Edzwald, J. K. (2006). Chapter 6: Dissolved air flotation in drinking water treatment doi:10.1016/S1573-4285(06)80075-X Retrieved from www.scopus.com

Elboughdiri, N. (2020). The use of natural zeolite to remove heavy metals cu (II), pb (II) and cd (II), from industrial wastewater. Cogent Engineering, 7(1) doi:10.1080/23311916.2020.1782623

ElSherbiny, I. M. A., & Panglisch, S. (2021). Enhancing the efficiency of membrane processes for water treatment. Membranes, 11(3) doi:10.3390/membranes11030215

Eneh, O. C. (2011). Managing nigeria's environment: The unresolved issues. Journal of Environmental Science and Technology, 4(3), 250-263. doi:10.3923/jest.2011.250.263

Esmaeili, H., & Foroutan, R. (2015). Investigation into ion-exchange and adsorption methods for removing heavy metal from aqueous solution. International Journal of Biology, Pharmacy and Allied Science, 4(12), 620-629. Retrieved from www.scopus.com

Farghali, A. A., Abdel Tawab, H. A., Abdel Moaty, S. A., & Khaled, R. (2017). Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 7(2), 101-111. doi:10.1007/s40097-017-0227-4

Figueres, C., Schellnhuber, H. J., Whiteman, G., Rockström, J., Hobley, A., & Rahmstorf, S. (2017). Three years to safeguard our climate. Nature, 546(7660), 593-595. doi:10.1038/546593a

Flinchum, B. A., Banks, E., Hatch, M., Batelaan, O., Peeters, L. J. M., & Pasquet, S. (2020). Identifying recharge under subtle ephemeral features in a flat-lying semi-arid region using a combined geophysical approach. Hydrology and Earth System Sciences, 24(9), 4353-4368. doi:10.5194/hess-24-4353-2020

Foster, J. E. (2017). Plasma-based water purification: Challenges and prospects for the future. Physics of Plasmas, 24(5) doi:10.1063/1.4977921

Foureaux, A. F. S., Reis, E. O., Lebron, Y., Moreira, V., Santos, L. V., Amaral, M. S., & Lange, L. C. (2019). Rejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosis. Separation and Purification Technology, 212, 171-179. doi:10.1016/j.seppur.2018.11.018

Gholami, P., Khataee, A., Soltani, R. D. C., Dinpazhoh, L., & Bhatnagar, A. (2020). Photocatalytic degradation of gemifloxacin antibiotic using zn-co-LDH@biochar nanocomposite. Journal of Hazardous Materials, 382 doi:10.1016/j.jhazmat.2019.121070

Gomes, I. B., Maillard, J. -., Simões, L. C., & Simões, M. (2020). Emerging contaminants affect the microbiome of water systems—strategies for their mitigation. Npj Clean Water, 3(1) doi:10.1038/s41545-020-00086-y

Gudmundsson, J. T., & Hecimovic, A. (2017). Foundations of DC plasma sources. Plasma Sources Science and Technology, 26(12) doi:10.1088/1361-6595/aa940d

Gumpu, M. B., Veerapandian, M., Krishnan, U. M., & Rayappan, J. B. B. (2018). Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode. Chemical Engineering Journal, 351, 319-327. doi:10.1016/j.cej.2018.06.097

Hayati, F., Isari, A. A., Anvaripour, B., Fattahi, M., & Kakavandi, B. (2020). Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: Effective factors, pathway and biodegradability studies. Chemical Engineering Journal, 381 doi:10.1016/j.cej.2019.122636

Hidalgo, A. M., & Murcia, M. D. (2021). Membranes for water and wastewater treatment. Membranes, 11(4) doi:10.3390/membranes11040295

Hunge, Y. M., Yadav, A. A., Dhodamani, A. G., Suzuki, N., Terashima, C., Fujishima, A., & Mathe, V. L. (2020). Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultrasonics Sonochemistry, 61 doi:10.1016/j.ultsonch.2019.104849

Hunge, Y. M., Yadav, A. A., Khan, S., Takagi, K., Suzuki, N., Teshima, K., . . . Fujishima, A. (2021). Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. Journal of Colloid and Interface Science, 582, 1058-1066. doi:10.1016/j.jcis.2020.08.102

Hussain, S., Awad, J., Sarkar, B., Chow, C. W. K., Duan, J., & van Leeuwen, J. (2019). Coagulation of dissolved organic matter in surface water by novel titanium (III) chloride: Mechanistic surface chemical and spectroscopic characterisation. Separation and Purification Technology, 213, 213-223. doi:10.1016/j.seppur.2018.12.038

Ince, M., & Kaplan Ince, O. (2020). Heavy metal removal techniques using response surface methodology: Water/wastewater treatment. Biochemical Toxicology—Heavy Metals and Nanomaterials, Retrieved from www.scopus.com

Islam, J. B., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2020). Photocatalytic degradation of a typical agricultural chemical: Metalaxyl in water using TiO2 under solar irradiation. SN Applied Sciences, 2(5) doi:10.1007/s42452-020-2722-3

Ismail, L., Rifai, A., Ferronato, C., Fine, L., Jaber, F., & Chovelon, J. -. (2016). Towards a better understanding of the reactive species involved in the photocatalytic degradation of sulfaclozine. Applied Catalysis B: Environmental, 185, 88-99. doi:10.1016/j.apcatb.2015.12.008

Jahdi, M., Mishra, S. B., Nxumalo, E. N., Mhlanga, S. D., & Mishra, A. K. (2020). Smart pathways for the photocatalytic degradation of sulfamethoxazole drug using F-pd co-doped TiO2 nanocomposites. Applied Catalysis B: Environmental, 267 doi:10.1016/j.apcatb.2020.118716

Jaleh, B., Nasrollahzadeh, M., Mohazzab, B. F., Eslamipanah, M., Sajjadi, M., & Ghafuri, H. (2021). State-of-the-art technology: Recent investigations on laser-mediated synthesis of nanocomposites for environmental remediation. Ceramics International, 47(8), 10389-10425. doi:10.1016/j.ceramint.2020.12.197

Janani, R., Gurunathan, B., K, S., Varjani, S., Ngo, H. H., & Gnansounou, E. (2022). Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. Environmental Research, 203 doi:10.1016/j.envres.2021.111815

Jassim, N., AlAmeri, M., & Dakhil, S. (2020). Single objective optimization of surface water coagulation process using inorganic/organic aid formulation by taguchi method. Periodicals of Engineering and Natural Sciences, 8(3), 1924-1934. doi:10.21533/pen.v8i3.1616

Jayant Kulkarni, S. (2020). Heavy metal pollution: Sources, effects, and control methods. Hazard.Waste Manage.Health Risks, , 97-112. Retrieved from www.scopus.com

Jenkins, M. W., Sangam, K., Tiwari, J. D., Nyakash, D., Wycliffe, S., & Langenbach, K. (2012). The BioSand filter for improved drinking water quality in high-risk communities in the njoro watershed, kenya. Retrieved from www.scopus.com

Ji, C., Wang, C., Sun, J., & Yu, Y. (2017). Degradation of 4-methylbenzylidene camphor (4-MBC) using fenton, UV light irradiation and photo-fenton. Paper presented at the MATEC Web of Conferences, , 100 doi:10.1051/matecconf/201710003006 Retrieved from www.scopus.com

Ji, Y., Zhou, L., Ferronato, C., Yang, X., Salvador, A., Zeng, C., & Chovelon, J. -. (2013). Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry, 254, 35-44. doi:10.1016/j.jphotochem.2013.01.003

Jia, Y., Wang, L., Qu, Z., Wang, C., & Yang, Z. (2017). Effects on heavy metal accumulation in freshwater fishes: Species, tissues, and sizes. Environmental Science and Pollution Research, 24(10), 9379-9386. doi:10.1007/s11356-017-8606-4

Jiang, B., Zheng, J., Qiu, S., Wu, M., Zhang, Q., Yan, Z., & Xue, Q. (2014). Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 236, 348-368. doi:10.1016/j.cej.2013.09.090

Jjagwe, J., Olupot, P. W., Menya, E., & Kalibbala, H. M. (2021). Synthesis and application of granular activated carbon from biomass waste materials for water treatment: A review. Journal of Bioresources and Bioproducts, 6(4), 292-322. doi:10.1016/j.jobab.2021.03.003

Jonnalagadda, S. B., & Mhere, G. (2001). Water quality of the odzi river in the eastern highlands of zimbabwe. Water Research, 35(10), 2371-2376. doi:10.1016/S0043-1354(00)00533-9

Justino, C. I. L., Duarte, K. R., Freitas, A. C., Panteleitchouk, T. S. L., Duarte, A. C., & Rocha-Santos, T. A. P. (2016). Contaminants in aquaculture: Overview of analytical techniques for their determination. TrAC - Trends in Analytical Chemistry, 80, 293-310. doi:10.1016/j.trac.2015.07.014

Kempińska, D., & Kot-Wasik, A. (2018). The use of RP-HPLC–Q-TOF–MS as a powerful tool for wastewater composition profiling and selection of water pollution marker specific to wastewater contamination. Monatshefte Fur Chemie, 149(9), 1595-1604. doi:10.1007/s00706-018-2259-y

Khodadadi, B., Bordbar, M., Yeganeh-Faal, A., & Nasrollahzadeh, M. (2017). Green synthesis of ag nanoparticles/clinoptilolite using vaccinium macrocarpon fruit extract and its excellent catalytic activity for reduction of organic dyes. Journal of Alloys and Compounds, 719, 82-88. doi:10.1016/j.jallcom.2017.05.135

Kiwaan, H. A., Atwee, T. M., Azab, E. A., & El-Bindary, A. A. (2020). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. Journal of Molecular Structure, 1200 doi:10.1016/j.molstruc.2019.127115

Köhler, S. J., Lavonen, E., Keucken, A., Schmitt-Kopplin, P., Spanjer, T., & Persson, K. (2016). Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment. Water Research, 89, 232-240. doi:10.1016/j.watres.2015.11.048

Kong, J., Coolahan, K., & Mugweru, A. (2013). Manganese based magnetic nanoparticles for heavy metal detection and environmental remediation. Analytical Methods, 5(19), 5128-5133. doi:10.1039/c3ay40359a

Kor, K., & Zarei, K. (2014). Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube-cetyltrimethylammonium bromide-poly(diphenylamine). Journal of Electroanalytical Chemistry, 733, 39-46. doi:10.1016/j.jelechem.2014.09.013

Kurniawan, T. A., Mengting, Z., Fu, D., Yeap, S. K., Othman, M. H. D., Avtar, R., & Ouyang, T. (2020). Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. Journal of Environmental Management, 270 doi:10.1016/j.jenvman.2020.110871

Lai, C. W., Juan, J. C., Ko, W. B., & Bee Abd Hamid, S. (2014). An overview: Recent development of titanium oxide nanotubes as photocatalyst for dye degradation. International Journal of Photoenergy, 2014 doi:10.1155/2014/524135

Liew, W. L., Kassim, M. A., Muda, K., Loh, S. K., & Affam, A. C. (2015). Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. Journal of Environmental Management, 149, 222-235. doi:10.1016/j.jenvman.2014.10.016

Liu, D., Xie, Q., Huang, X., Wan, C., Deng, F., Liang, D., & Liu, J. (2020). Backwashing behavior and hydrodynamic performances of granular activated carbon blends. Environmental Research, 184 doi:10.1016/j.envres.2020.109302

Liu, Y., Xinghui, L., Mehmet, R., Dokmeci, R., & Ming, L. W. (2011). Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Retrieved from www.scopus.com

Locke, B. R., Sato, M., Sunka, P., Hoffmann, M. R., & Chang, J. -. (2006). Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial and Engineering Chemistry Research, 45(3), 882-905. doi:10.1021/ie050981u

Loeb, S. K., Alvarez, P. J. J., Brame, J. A., Cates, E. L., Choi, W., Crittenden, J., . . . Kim, J. -. (2019). The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environmental Science and Technology, 53(6), 2937-2947. doi:10.1021/acs.est.8b05041

Malaysia Environmental Quality Act 1974. (2021). Environmental quality (industrial effluents) regulations 2009. Environmental Quality (Industrial Effluent) Regulations 2009, Retrieved from www.scopus.com

Mateo-Sagasta, J., Marjani, S., & Turral, H. (2018). More people, more food… worse water? - water pollution from agriculture: A global review. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture, Retrieved from www.scopus.com


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.