UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Road accidents are increasing every year in Malaysia, and it is always challenging to collect reliable pre-crash data in the transportation community. Existing studies relied on simulators, police crash reports, questionnaires, and surveys to study Malaysia’s drivers’ behavior. Researchers previously criticized such methods for being biased and unreliable. To fill in the literature gap, this study presents the first naturalistic driving study in Malaysia. Thirty drivers were recruited to drive an instrumented vehicle for 750 km while collecting continuous driving data. The data acquisition system consists of various sensors such as OBDII, lidar, ultrasonic sensors, IMU, and GPS. Irrelevant data were filtered, and experts helped identify safety criteria regarding multiple driving metrics such as maximum acceptable speed limits, safe accelerations, safe decelerations, acceptable distances to vehicles ahead, and safe steering behavior. These thresholds were used to investigate the influence of social and cultural factors on driving in Malaysia. The findings show statistically significant differences between drivers based on gender, age, and cultural background. There are also significant differences in the results for those who drove on weekends rather than weekdays. The study presents several recommendations to various public and governmental sectors to help prevent future accidents and improve traffic safety. |
References |
Al-Hussein, W. A., Kiah, M. L. M., Yee, P. L., & Zaidan, B. B. (2021). A systematic review on sensor-based driver behaviour studies: Coherent taxonomy, motivations, challenges, recommendations, substantial analysis and future directions. PeerJ Computer Science, 7, 1-50. doi:10.7717/peerj-cs.632 Alsrehin, N. O., Klaib, A. F., & Magableh, A. (2019). Intelligent transportation and control systems using data mining and machine learning techniques: A comprehensive study. IEEE Access, 7, 49830-49857. doi:10.1109/ACCESS.2019.2909114 Amado, S., Arikan, E., Kaça, G., Koyuncu, M., & Turkan, B. N. (2014). How accurately do drivers evaluate their own driving behavior? an on-road observational study. Accident Analysis and Prevention, 63, 65-73. doi:10.1016/j.aap.2013.10.022 Ang, B. H., Chen, W. S., & Lee, S. W. (2019). The malay manchester driver behaviour questionnaire: A cross-sectional study of geriatric population in malaysia. Journal of Transport and Health, 14 doi:10.1016/j.jth.2019.100573 Bao, S., Wu, L., Yu, B., & Sayer, J. R. (2020). An examination of teen drivers’ car-following behavior under naturalistic driving conditions: With and without an advanced driving assistance system. Accident Analysis and Prevention, 147 doi:10.1016/j.aap.2020.105762 Bastos, J. T., dos Santos, P. A. B., Amancio, E. C., Gadda, T. M. C., Ramalho, J. A., King, M. J., & Oviedo-Trespalacios, O. (2021). Is organized carpooling safer? speeding and distracted driving behaviors from a naturalistic driving study in brazil. Accident Analysis and Prevention, 152 doi:10.1016/j.aap.2021.105992 Bastos, J. T., Dos Santos, P. A. B., Amancio, E. C., Gadda, T. M. C., Ramalho, J. A., King, M. J., & Oviedo-Trespalacios, O. (2020). Naturalistic driving study in brazil: An analysis of mobile phone use behavior while driving. International Journal of Environmental Research and Public Health, 17(17), 1-14. doi:10.3390/ijerph17176412 Berdoulat, E., Vavassori, D., & Sastre, M. T. M. (2013). Driving anger, emotional and instrumental aggressiveness, and impulsiveness in the prediction of aggressive and transgressive driving. Accident Analysis and Prevention, 50, 758-767. doi:10.1016/j.aap.2012.06.029 Cassarino, M., & Murphy, G. (2018). Reducing young drivers’ crash risk: Are we there yet? an ecological systems-based review of the last decade of research. Transportation Research Part F: Traffic Psychology and Behaviour, 56, 54-73. doi:10.1016/j.trf.2018.04.003 Chen, R., Kusano, K. D., & Gabler, H. C. (2015). Driver behavior during overtaking maneuvers from the 100-car naturalistic driving study. Traffic Injury Prevention, 16, S176-S181. doi:10.1080/15389588.2015.1057281 Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, Retrieved from www.scopus.com Dabirinejad, S., Tavakoli Kashani, A., & Nordfjærn, T. (2020). The association between lifestyle and aberrant driving behavior among iranian car drivers. Transportation Research Interdisciplinary Perspectives, 8 doi:10.1016/j.trip.2020.100221 Das, A., Khan, M. N., & Ahmed, M. M. (2020). Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques. Accident Analysis and Prevention, 142 doi:10.1016/j.aap.2020.105578 Demir, B., Demir, S., & Özkan, T. (2016). A contextual model of driving anger: A meta-analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 332-349. doi:10.1016/j.trf.2016.09.020 Dohoo, I. R., Ducrot, C., Fourichon, C., Donald, A., & Hurnik, D. (1997). An overview of techniques for dealing with large numbers of independent variables in epidemiologic studies. Preventive Veterinary Medicine, 29(3), 221-239. doi:10.1016/S0167-5877(96)01074-4 Foo, K. Y. (2015). Effects of familial climate on the adolescents’ driving habits: A recent literature. International Journal of Injury Control and Safety Promotion, 22(2), 127-135. doi:10.1080/17457300.2013.855795 Fuller, R. (2005). Towards a general theory of driver behaviour. Accident Analysis and Prevention, 37(3), 461-472. doi:10.1016/j.aap.2004.11.003 Ghasemzadeh, A., & Ahmed, M. M. (2017). Drivers' lane-keeping ability in heavy rain: Preliminary investigation using SHRP 2 naturalistic driving study data doi:10.3141/2663-13 Retrieved from www.scopus.com Ghasemzadeh, A., & Ahmed, M. M. (2019). Quantifying regional heterogeneity effect on drivers’ speeding behavior using SHRP2 naturalistic driving data: A multilevel modeling approach. Transportation Research Part C: Emerging Technologies, 106, 29-40. doi:10.1016/j.trc.2019.06.017 Goldenbeld, C., & van Schagen, I. (2007). The credibility of speed limits on 80 km/h rural roads: The effects of road and person(ality) characteristics. Accident Analysis and Prevention, 39(6), 1121-1130. doi:10.1016/j.aap.2007.02.012 Hassan, N., Zamzuri, H., Wahid, N., Zulkepli, K. A., & Azmi, M. Z. (2017). Driver's steering behaviour identification and modelling in near rear-end collision. Telkomnika (Telecommunication Computing Electronics and Control), 15(2), 861-868. doi:10.12928/TELKOMNIKA.v15i2.6133 Ismail, A., Yi, G. S., & Zain, M. K. I. M. (2015). Study on drivers’ behaviour relationships to reduce road accidents in puchong, selangor darul ehsan. Jurnal Kejuruteraan, 27, 81-85. Retrieved from www.scopus.com Jasinski, M. G., & Baldo, F. (2017). A method to identify aggressive driver behavior based on enriched GPS data analysis. The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services, , 97-102. Retrieved from www.scopus.com Katzourakis, D. I., Abbink, D. A., Velenis, E., Holweg, E., & Happee, R. (2014). Driver's arms' time-variant neuromuscular admittance during real car test-track driving. IEEE Transactions on Instrumentation and Measurement, 63(1), 221-230. doi:10.1109/TIM.2013.2277610 Khan, S. U. R., Khalifah, Z. B., Munir, Y., Islam, T., Nazir, T., & Khan, H. (2015). Driving behaviours, traffic risk and road safety: Comparative study between malaysia and singapore. International Journal of Injury Control and Safety Promotion, 22(4), 359-367. doi:10.1080/17457300.2014.925938 Kovaceva, J., Isaksson-Hellman, I., & Murgovski, N. (2020). Identification of aggressive driving from naturalistic data in car-following situations. Journal of Safety Research, 73, 225-234. doi:10.1016/j.jsr.2020.03.003 Laapotti, S., Keskinen, E., & Rajalin, S. (2003). Comparison of young male and female drivers' attitude and self-reported traffic behaviour in finland in 1978 and 2001. Journal of Safety Research, 34(5), 579-587. doi:10.1016/j.jsr.2003.05.007 Li, Z., Zhang, K., Chen, B., Dong, Y., & Zhang, L. (2019). Driver identification in intelligent vehicle systems using machine learning algorithms. IET Intelligent Transport Systems, 13(1), 40-47. doi:10.1049/iet-its.2017.0254 Lim, P. C., Sheppard, E., & Crundall, D. (2013). Cross-cultural effects on drivers' hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour, 21, 194-206. doi:10.1016/j.trf.2013.09.016 Liu, H., Taniguchi, T., Tanaka, Y., Takenaka, K., & Bando, T. (2017). Visualization of driving behavior based on hidden feature extraction by using deep learning. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2477-2489. doi:10.1109/TITS.2017.2649541 Llorca, C., Moreno, A. T., & Garcia, A. (2016). Modelling vehicles acceleration during overtaking manoeuvres. IET Intelligent Transport Systems, 10(3), 206-215. doi:10.1049/iet-its.2015.0035 Lyu, N., Deng, C., Xie, L., Wu, C., & Duan, Z. (2019). A field operational test in china: Exploring the effect of an advanced driver assistance system on driving performance and braking behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 730-747. doi:10.1016/j.trf.2018.01.003 Metz, B., Schoch, S., Just, M., & Kuhn, F. (2014). How do drivers interact with navigation systems in real life conditions?: Results of a field-operational-test on navigation systems. Transportation Research Part F: Traffic Psychology and Behaviour, 24, 146-157. doi:10.1016/j.trf.2014.04.011 Montella, A., Pariota, L., Galante, F., Imbriani, L. L., & Mauriello, F. (2014). Prediction of drivers' speed behavior on rural motorways based on an instrumented vehicle study doi:10.3141/2434-07 Retrieved from www.scopus.com Mukhtar, A., Xia, L., & Tang, T. B. (2015). Vehicle detection techniques for collision avoidance systems: A review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2318-2338. doi:10.1109/TITS.2015.2409109 Nawawi, M. N., Ahmat, N., & Samsudin, H. (2018). Driver behaviours of road users in klang valley, malaysia. Malaysian Journal of Consumer and Family Economics, 21, 38-49. Retrieved from www.scopus.com Özkan, T., & Lajunen, T. (2006). What causes the differences in driving between young men and women? the effects of gender roles and sex on young drivers' driving behaviour and self-assessment of skills. Transportation Research Part F: Traffic Psychology and Behaviour, 9(4), 269-277. doi:10.1016/j.trf.2006.01.005 Pallant, J. (2001). SPSS Survival Manual, Retrieved from www.scopus.com Pallant, J. (2011). Survival Manual: A Step by Step Guide to Data Analysis using the SPSS Program, 4 Retrieved from www.scopus.com Park, S., Park, J., Seo, B., & Kim, B. (2016). Development of reproducible test vehicle and evaluation scenario for driver pedal behavior analysis in unexpected emergency situations. International Journal of Control and Automation, 9(11), 385-396. doi:10.14257/ijca.2016.9.11.33 Perez, M. A., Sears, E., Valente, J. T., Huang, W., & Sudweeks, J. (2021). Factors modifying the likelihood of speeding behaviors based on naturalistic driving data. Accident Analysis and Prevention, 159 doi:10.1016/j.aap.2021.106267 Richard, C. M., Lee, J., Atkins, R., & Brown, J. L. (2020). Using SHRP2 naturalistic driving data to examine driver speeding behavior. Journal of Safety Research, 73, 271-281. doi:10.1016/j.jsr.2020.03.008 Rosli, N., Ambak, K., Shahidan, N. N., Sukor, N. S. A., & Yei, S. O. S. (2020). Driving behaviour of elderly drivers in malaysia. International Journal of Integrated Engineering, 12(8), 268-277. doi:10.30880/IJIE.2020.12.08.026 Sagberg, F., Selpi, Bianchi Piccinini, G. F., & Engström, J. (2015). A review of research on driving styles and road safety. Human Factors, 57(7), 1248-1275. doi:10.1177/0018720815591313 Svetina, M. (2016). The reaction times of drivers aged 20 to 80 during a divided attention driving. Traffic Injury Prevention, 17(8), 810-814. doi:10.1080/15389588.2016.1157590 Tawfeek, M. H., & El-Basyouny, K. (2018). A perceptual forward collision warning model using naturalistic driving data. Canadian Journal of Civil Engineering, 45(10), 899-907. doi:10.1139/cjce-2017-0592 Van Treese, J. W., Koeser, A. K., Fitzpatrick, G. E., Olexa, M. T., & Allen, E. J. (2017). A review of the impact of roadway vegetation on drivers’ health and well-being and the risks associated with single-vehicle crashes. Arboricultural Journal, 39(3), 179-193. doi:10.1080/03071375.2017.1374591 Williams, A. F., Kyrychenko, S. Y., & Retting, R. A. (2006). Characteristics of speeders. Journal of Safety Research, 37(3), 227-232. doi:10.1016/j.jsr.2006.04.001 Wu, J., & Xu, H. (2018). Driver behavior analysis on rural 2-lane, 2-way highways using SHRP 2 NDS data. Traffic Injury Prevention, 19(8), 838-843. doi:10.1080/15389588.2018.1524142 Xiong, H., Bao, S., Sayer, J., & Kato, K. (2015). Examination of driver's cell phone use behavior at intersections by using naturalistic driving data. Journal of Safety Research, 54, 89.e29-93. doi:10.1016/j.jsr.2015.06.012 Zhou, Y., Jiang, X., Fu, C., & Liu, H. (2021). Operational factor analysis of the aggressive taxi speeders using random parameters bayesian LASSO modeling approach. Accident Analysis and Prevention, 157 doi:10.1016/j.aap.2021.106183 Ziakopoulos, A., Tselentis, D., Kontaxi, A., & Yannis, G. (2020). A critical overview of driver recording tools. Journal of Safety Research, 72, 203-212. doi:10.1016/j.jsr.2019.12.021 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |