UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Numerous commercially available ligand with simple structures as donor and acceptor moieties can be engaged in
fabrication of one-dimensional (1D) materials. Metal coordination approach is an effective and facile method for
generating 1D luminescent nanowires with length ranging from several nanometres up to hundreds of nanometres
compared to the other methods available. In this research 1D photoluminescence pyrazine-based coordination
complexes were fabricated by integrating an electron-donor (D) tetra-2-pyridinylpyrazine (tppz) unit and
electron-acceptor (A) 2-phenylpyrimidine (ppm) moiety or 2,6-bis(2-benzimidazolyl)pyridine (bzimpy) to form a
D–A–D configuration. The tppz itself hardly fluoresces, but upon complexation with metal ions the fluorescence
of tppz-metal was observed. This may be resulting from the change of lowest excited-state due to complexation
with metal that acts as a strong Lewis acid. Tppz has been utilised as a bridging ligand in building block of
molecular wires which exhibits strong light absorption in yellow region. However, this limitation suppresses the
ability of tppz to be fully utilised in light harvesting. Pyrimidine and pyridine have good compatibility with tppz
and acts as a monodentate and tridentate ligands that potentially coordinate with numerous metal ions such as
nickel(II), copper(II) and zinc(II). Therefore, hybridization between tppz and another pigment moiety is an
alternative to overcomes this inadequacy and expands the potential of tppz to be employed in fabrication of
nanoscale functional materials such as photoanode in photocurrent generation system. |
References |
Zhang, X-L., Tang, G.-M. and Wang, Y.-T. A set of Ag-based metal coordination polymers with sulfonate group: Syntheses, crystal structures and luminescent behaviours. Polyhedron. 148, 55-69 (2018).
Ul Haq, M., Wen, Z., Zhang, Z., Khan, S., Lou, Z., Ye, Z., and Zhu,L. A two-step synthesis of nanosheet-covered fibers based on -Fe2O3/NiO composites towards enhanced acetone α sensing. Scientific Reports. 8, 1705 (2018).
Golafale, S.T., Ingram, C.W., Basca, J., Steiner, A. and Solntsev, K.M. Synthesis, structure and photoluminescence properties of lanthanide based metal organic frameworks and a cadmium coordination polymer derived from 2,2’-diamino-trans 4,4’-stilbenedicarboxylate. Inorg. Chim. Acta., 478, 243-249 (2018).
Zhang, X.-T, Chen, H.-T, Li, B., Liu, G.-Z and Liu, X. –Z. Assembly of a series of coordination polymers built from rigid a tetracarboxylate ligand and flexible bis(imidazole) linker: Syntheses, structural diversities, luminescence sensing, and photocatalytic properties. Dalton Transactions. 47, 1202-1213 (2018).
Zhu, Q.-L. and Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 43, 5403–6176 (2014).
Mccarthy, B. D., Martin, D. J., Rountree, E. S., Ullman, A. C. and Dempsey, J. L. Electrochemical reduction of Brønsted acids by glassy carbon in acetonitrile-Implications for electrocatalytic hydrogen evolution. Chem. Commun. 53, 8350-8361 (2014).
Wilcox, O. T., Fateeva, A., Katsoulidis, A. P., Smith, M. W., Stone, C. A. and Rosseinsky, M. J. Acid loaded porphyrin-based metal–organic framework for ammonia uptake. Chem. Commun 51, 14989–14991 (2015).
Lin, W., Hu, Q., Jiang, K., Yang, Y., Yang, Y., Cui, Y. and Qian, G. A porphyrin-based metal–organic framework as a pH-responsive drug carrier. J. Solid State Chem. 237, 307–312 (2016).
So, M. C., Wiederrecht, G. P., Mondloch, J. E., Hupp, J. T. and Farha, O. K. Metal–organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 3501–3510 (2015).
Kambe, T., Sakamoto, R., Hoshiko, K., Takada, K., Miyachi, M., Ryu, J-H., Sasaki, S., Kimi, J., Nakazato, K., Takata, M. and Nishihara, H. π‑conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 137, 2462-2465 (2013).
Sengupta, A., Datta, S., Su, C., Herng, T. S., Ding, J., Vittal, J. J. and Loh, K. P. Tunable electrical conductivity and magnetic property of the two dimensional metal organic framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Appl. Mater. Interfaces. 8, 16154-16159 (2016).
Huh, S., Jung, S., Kim, Y., Kim, S.-J. and Park, S. Two-dimensional metal–organic frameworks with blue luminescence. Dalton Trans. 39, 1261-1265 (2009).
Ko, S.H., Lee, D., Kang, H. W., Nam, K. H., Yeo, J. Y., Hong, S. J., Grigoropoulos, C. P. and Sung, H. J. Nanoforest of hydrothermally grown hierarchirical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Letters. 11, 666-671 (2011).
Lee, Y. J., Ham, S. R., Kim, J. H., Yoo, T. H., Kim, S. R., Lee, Y. T., Hwang, D. K., Angadi, B., Seo, W. S. Ju, B. K. and Choi, W. K. Highly dispersible buckled nanospring carbon nanotubes for polymer nano composites. Scientific Reports. 8, 4851 (2018).
Haggren, T., Khayrudinov, V., Dhaka, V., Jiang, H., Shah, A., Kim, M. and Lipsanen, H. III-V nanowires on black silicon and low-temperature growth of self-catalyzed rectangular InAs NWs. Scientific Reports. 8, 6410 (2018).
Mustafar, S., Wu, K.-H., Toyoda, R., Takada, K., Maeda, H., Miyachi, M., Sakamoto, R. and Nishihara, H. Electrochemical fabrication of one-dimensional porphyrininc wires on electrodes. Inorg. Chem. Frontier. 3, 370-375 (2016).
Zha, Q., Ding, C., Rui, X and Xie, Y. A novel porphyrin-based ligand containing four 4,4’- dipyridylamine moieties: Syntheses, structures, and luminescent properties of Mn(II), Cu(II), Zn(II), and Cd(II) coordination polymers. Cryst. Growth Des. 13, 4583–4590 (2013).
Ikbal, S. A., Brahma, S. and Rath, S. P. Building-up remarkably stable magnesium porphyrin polymers self-assembled via bidentate axial ligands: Synthesis, structure, surface morphology, and effect of bridging ligands. Inorg. Chem. 51, 9666–9676 (2012).
Ren, G.-J., Liu, Y.-Q. and Liu, S.-J. Two novel metal-organic frameworks based on linear dicarboxylic acid and 5-(4-pyridyl)tetrazole. J. Solid State Chem. 232, 79–82 (2015).
Dong, D., Yu, N., Cong, Y., Zhao, Y., Zhao, H., Liu, D., Li, Z., Liu, J. and Liu, D. In-situ hydrothermal preparation of a novel 3D CuI-based tetrazole coordination polymer with pseudo-porphyrin secondary building units. Inorg. Chem. Commun. 62, 1–4 (2015).
Collman, J. P., McDevitt, J.T., Leidner, C.R., Yee, G.T., Torrance, J.B. and Little, W. A. Synthetic, electrochemical, optical, and conductivity studies of coordination polymers of iron, ruthenium, and osmium octaethylporphyrin. J. Am. Chem. Soc. 109, 4606–4614 (1987).
Wang, P., Lou, X., Li, C., Hu, X., Yang, Q. and Hu, B. One-pot synthesis of Co-based coordination polymer nanowire for Li-Ion batteries with great capacity and stable cycling stability. Nano-Micro Letters, 10, 19 (2018).
Shi, X., Zhu, Guangshan., Fang, Q., Wu, G., Tian, G., Wang, R., Zhang, D., Xue, M. and Shilun, Q. Eur. J. Inorg. Chem., 185-191 (2004).
Yuasa, J and Fukuzumi, S. AN OFF-OFF-ON fluorescence sensor for metal ions in stepwise complex formation of 2,3,5,6-tetrakis(2-pyridyl)pyrazine with metal ions. J. Am. Chem. Soc. 128, 15976-15977 (2006).
Frisch M, Trucks G, Schlegel K, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G and Nakatsuji H 2009 Gaussian 09, revisison a. 02, Gaussian. Inc., Wallingford, CT.
Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.;
İnkaya E, Dinçer M, Ekici Ö, and Cukurovali A 2012 J. Mol. Struct. 1026 117-26
Atiş M, Karipcin F, Sarıboğa B, Taş M, Çelik H 2012 Spectrochim. Acta Part A 31 290-301 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |