UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Purpose: Medical images are important in diagnosing disease and treatment planning. Computer algorithms that describe anatomical structures that highlight regions of interest and remove unnecessary information are collectively known as medical image segmentation algorithms. The quality of these algorithms will directly affect the performance of the following processing steps. There are many studies about the algorithms of medical image segmentation and their applications, but none involved a bibliometric of medical image segmentation. Methods: This bibliometric work investigated the academic publication trends in medical image segmentation technology. These data were collected from the Web of Science (WoS) Core Collection and the Scopus. In the quantitative analysis stage, important visual maps were produced to show publication trends from five different perspectives including annual publications, countries, top authors, publication sources, and keywords. In the qualitative analysis stage, the frequently used methods and research trends in the medical image segmentation field were analyzed from 49 publications with the top annual citation rates. Results: The analysis results showed that the number of publications had increased rapidly by year. The top related countries include the Chinese mainland, the United States, and India. Most of these publications were conference papers, besides there are also some top journals. The research hotspot in this field was deep learning-based medical image segmentation algorithms based on keyword analysis. These publications were divided into three categories: reviews, segmentation algorithm publications, and other relevant publications. Among these three categories, segmentation algorithm publications occupied the vast majority, and deep learning neural network-based algorithm was the research hotspots and frontiers. Conclusions: Through this bibliometric research work, the research hotspot in the medical image segmentation field is uncovered and can point to future research in the field. It can be expected that more researchers will focus their work on deep learning neural network-based medical image segmentation. |
References |
Aghaei Chadegani, A., Salehi, H., Md Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of science and scopus databases. Asian Social Science, 9(5), 18-26. doi:10.5539/ass.v9n5p18 Ale Ebrahim, N., Norfarah, N., Siti Nabiha, A. K., & Mohd Ali, S. (2019). Firms’ sustainable practice research in developing countries: Mapping the cited literature by bibliometric analysis approach. Int.J.Sustain.Strategic Manage., 7(1-2), 5-26. Retrieved from www.scopus.com Ali, M., Son, L. H., Khan, M., & Tung, N. T. (2018). Segmentation of dental X-ray images in medical imaging using neutrosophic orthogonal matrices. Expert Systems with Applications, 91, 434-441. doi:10.1016/j.eswa.2017.09.027 Alom, M. Z., Yakopcic, C., Hasan, M., Taha, T. M., & Asari, V. K. (2019). Recurrent residual U-net for medical image segmentation. Journal of Medical Imaging, 6(1) doi:10.1117/1.JMI.6.1.014006 Alsmirat, M. A., Jararweh, Y., Al-Ayyoub, M., Shehab, M. A., & Gupta, B. B. (2017). Accelerating compute intensive medical imaging segmentation algorithms using hybrid CPU-GPU implementations. Multimedia Tools and Applications, 76(3), 3537-3555. doi:10.1007/s11042-016-3884-2 Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. doi:10.1016/j.joi.2017.08.007 Bezdek, J. C., Hall, L. O., & Clarke, L. P. (1993). Review of MR image segmentation techniques using pattern recognition. Medical Physics, 20(4), 1033-1048. doi:10.1118/1.597000 Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., & Rueckert, D. (2018). DRINet for medical image segmentation. IEEE Transactions on Medical Imaging, 37(11), 2453-2462. doi:10.1109/TMI.2018.2835303 Chen, X., Udupa, J. K., Bagci, U., Zhuge, Y., & Yao, J. (2012). Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Transactions on Image Processing, 21(4), 2035-2046. doi:10.1109/TIP.2012.2186306 Connelly, T. M., Malik, Z., Sehgal, R., Byrnes, G., Coffey, J. C., & Peirce, C. (2020). The 100 most influential manuscripts in robotic surgery: A bibliometric analysis. Journal of Robotic Surgery, 14(1), 155-165. doi:10.1007/s11701-019-00956-9 Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., & Heng, P. -. (2017). 3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis, 41, 40-54. doi:10.1016/j.media.2017.05.001 Drozdzal, M., Chartrand, G., Vorontsov, E., Shakeri, M., Di Jorio, L., Tang, A., . . . Kadoury, S. (2018). Learning normalized inputs for iterative estimation in medical image segmentation. Medical Image Analysis, 44, 1-13. doi:10.1016/j.media.2017.11.005 Ebrahim, S. A., Pedram, M. Z., & Ebrahim, N. A. (2020). Current status of systemic drug delivery research: A bibliometric study. Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications, , 39-55. Retrieved from www.scopus.com Feng, Y., Zhao, H., Li, X., Zhang, X., & Li, H. (2017). A multi-scale 3D otsu thresholding algorithm for medical image segmentation. Digital Signal Processing: A Review Journal, 60, 186-199. doi:10.1016/j.dsp.2016.08.003 Grau, V., Mewes, A. U. J., Alcañiz, M., Kikinis, R., & Warfield, S. K. (2004). Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, 23(4), 447-458. doi:10.1109/TMI.2004.824224 Gu, W., Yuan, Y., Yang, H., Qi, G., Jin, X., & Yan, J. (2015). A bibliometric analysis of the 100 most influential papers on COPD. International Journal of COPD, 10, 667-676. doi:10.2147/COPD.S74911 Gu, Z., Cheng, J., Fu, H., Zhou, K., Hao, H., Zhao, Y., . . . Liu, J. (2019). CE-net: Context encoder network for 2D medical image segmentation. IEEE Transactions on Medical Imaging, 38(10), 2281-2292. doi:10.1109/TMI.2019.2903562 He, L., Fang, H., Wang, X., Wang, Y., Ge, H., Li, C., . . . He, H. (2020). The 100 most-cited articles in urological surgery: A bibliometric analysis. International Journal of Surgery, 75, 74-79. doi:10.1016/j.ijsu.2019.12.030 He, L., Peng, Z., Everding, B., Wang, X., Han, C. Y., Weiss, K. L., & Wee, W. G. (2008). A comparative study of deformable contour methods on medical image segmentation. Image and Vision Computing, 26(2), 141-163. doi:10.1016/j.imavis.2007.07.010 Heimann, T., & Meinzer, H. -. (2009). Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis, 13(4), 543-563. doi:10.1016/j.media.2009.05.004 Hesamian, M. H., Jia, W., He, X., & Kennedy, P. (2019). Deep learning techniques for medical image segmentation: Achievements and challenges. Journal of Digital Imaging, 32(4), 582-596. doi:10.1007/s10278-019-00227-x Hu, Y., Yu, Z., Chen, X., Luo, Y., & Wen, C. (2020). A bibliometric analysis and visualization of medical data mining research. Medicine, 99(22), e20338. doi:10.1097/MD.0000000000020338 Jermyn, M., Ghadyani, H., Mastanduno, M. A., Turner, W., Davis, S. C., Dehghani, H., & Pogue, B. W. (2013). Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography. Journal of Biomedical Optics, 18(8) doi:10.1117/1.JBO.18.8.086007 Khadidos, A., Sanchez, V., & Li, C. -. (2017). Weighted level set evolution based on local edge features for medical image segmentation. IEEE Transactions on Image Processing, 26(4), 1979-1991. doi:10.1109/TIP.2017.2666042 Li, B. N., Chui, C. K., Chang, S., & Ong, S. H. (2011). Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Computers in Biology and Medicine, 41(1), 1-10. doi:10.1016/j.compbiomed.2010.10.007 Li, D. (2018). Transforming Time Series for Efficient and Accurate Classification, Retrieved from www.scopus.com Li, Y., Jiao, L., Shang, R., & Stolkin, R. (2015). Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Information Sciences, 294, 408-422. doi:10.1016/j.ins.2014.10.005 Ma, Z., Tavares, J. M. R. S., Jorge, R. N., & Mascarenhas, T. (2010). A review of algorithms for medical image segmentation and their applications to the female pelvic cavity. Computer Methods in Biomechanics and Biomedical Engineering, 13(2), 235-246. doi:10.1080/10255840903131878 Maghami, M. R., Asl, S. N., Rezadad, M. E., Ale Ebrahim, N., & Gomes, C. (2015). Qualitative and quantitative analysis of solar hydrogen generation literature from 2001 to 2014. Scientometrics, 105(2), 759-771. doi:10.1007/s11192-015-1730-3 Maulik, U. (2009). Medical image segmentation using genetic algorithms. IEEE Transactions on Information Technology in Biomedicine, 13(2), 166-173. doi:10.1109/TITB.2008.2007301 Milletari, F., Navab, N., & Ahmadi, S. -. (2016). V-net: Fully convolutional neural networks for volumetric medical image segmentation. Paper presented at the Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, 565-571. doi:10.1109/3DV.2016.79 Retrieved from www.scopus.com Moeskops, P., Wolterink, J. M., van der Velden, B. H. M., Gilhuijs, K. G. A., Leiner, T., Viergever, M. A., & Išgum, I. (2016). Deep learning for multi-task medical image segmentation in multiple modalities doi:10.1007/978-3-319-46723-8_55 Retrieved from www.scopus.com Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., . . . Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7) doi:10.1371/journal.pmed.1000097 Ng, H. P., Ong, S. H., Foong, K. W. C., Goh, P. S., & Nowinski, W. L. (2006). Medical image segmentation using k-means clustering and improved watershed algorithm. Paper presented at the Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, , 2006 61-65. Retrieved from www.scopus.com Nie, D., Gao, Y., Wang, L., & Shen, D. (2018). ASDNet: Attention based semi-supervised deep networks for medical image segmentation doi:10.1007/978-3-030-00937-3_43 Retrieved from www.scopus.com Norouzi, A., Rahim, M. S. M., Altameem, A., Saba, T., Rad, A. E., Rehman, A., & Uddin, M. (2014). Medical image segmentation methods, algorithms, and applications. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 31(3), 199-213. doi:10.1080/02564602.2014.906861 Olabarriaga, S. D., & Smeulders, A. W. M. (2001). Interaction in the segmentation of medical images: A survey. Medical Image Analysis, 5(2), 127-142. doi:10.1016/S1361-8415(00)00041-4 Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation doi:10.1146/annurev.bioeng.2.1.315 Retrieved from www.scopus.com Pizer, S. M., Fletcher, P. T., Joshi, S., Thall, A., Chen, J. Z., Fridman, Y., . . . Chaney, E. L. (2003). Deformable M-reps for 3D medical image segmentation. International Journal of Computer Vision, 55(2-3), 85-106. doi:10.1023/A:1026313132218 Rahmatullah, B., & Besar, R. (2009). Analysis of semi-automated method for femur length measurement from foetal ultrasound. Journal of Medical Engineering and Technology, 33(6), 417-425. doi:10.1080/03091900802451232 Rahmatullah, B., & Noble, J. A. (2014). Anatomical object detection in fetal ultrasound: Computer-expert agreements doi:10.1007/978-3-642-54121-6_18 Retrieved from www.scopus.com Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation doi:10.1007/978-3-319-24574-4_28 Retrieved from www.scopus.com Roth, H. R., Oda, H., Zhou, X., Shimizu, N., Yang, Y., Hayashi, Y., . . . Mori, K. (2018). An application of cascaded 3D fully convolutional networks for medical image segmentation. Computerized Medical Imaging and Graphics, 66, 90-99. doi:10.1016/j.compmedimag.2018.03.001 Rueda, S., Fathima, S., Knight, C. L., Yaqub, M., Papageorghiou, A. T., Rahmatullah, B., . . . Noble, J. A. (2014). Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: A grand challenge. IEEE Transactions on Medical Imaging, 33(4), 797-813. doi:10.1109/TMI. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., . . . Kikinis, R. (1998). Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2), 143-168. doi:10.1016/S1361-8415(98)80009-1 Sharma, N., Ray, A. K., Shukla, K. K., Sharma, S., Pradhan, S., Srivastva, A., & Aggarwal, L. (2010). Automated medical image segmentation techniques. Journal of Medical Physics, 35(1), 3-14. doi:10.4103/0971-6203.58777 Smistad, E., Falch, T. L., Bozorgi, M., Elster, A. C., & Lindseth, F. (2015). Medical image segmentation on GPUs - A comprehensive review. Medical Image Analysis, 20(1), 1-18. doi:10.1016/j.media.2014.10.012 Strzelecki, M., Szczypinski, P., Materka, A., & Klepaczko, A. (2013). A software tool for automatic classification and segmentation of 2D/3D medical images. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 702, 137-140. doi:10.1016/j.nima.2012.09.006 Taha, A. A., & Hanbury, A. (2015). Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Medical Imaging, 15(1) doi:10.1186/s12880-015-0068-x Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J. N., Wu, Z., & Ding, X. (2020). Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, 63 doi:10.1016/j.media.2020.101693 Tsai, A., Yezzi Jr., A., Wells, W., Tempany, C., Tucker, D., Fan, A., . . . Willsky, A. (2003). A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22(2), 137-154. doi:10.1109/TMI.2002.808355 Vardhana, M., Arunkumar, N., Lasrado, S., Abdulhay, E., & Ramirez-Gonzalez, G. (2018). Convolutional neural network for bio-medical image segmentation with hardware acceleration. Cognitive Systems Research, 50, 10-14. doi:10.1016/j.cogsys.2018.03.005 Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., & Vercauteren, T. (2019). Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing, 338, 34-45. doi:10.1016/j.neucom.2019.01.103 Wang, G., Li, W., Zuluaga, M. A., Pratt, R., Patel, P. A., Aertsen, M., . . . Vercauteren, T. (2018). Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Transactions on Medical Imaging, 37(7), 1562-1573. doi:10.1109/TMI.2018.2791721 Wang, G., Zuluaga, M. A., Li, W., Pratt, R., Patel, P. A., Aertsen, M., . . . Vercauteren, T. (2019). DeepIGeoS: A deep interactive geodesic framework for medical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(7), 1559-1572. doi:10.1109/TPAMI.2018.2840695 Wang, Z., Zhang, T., Huang, F., & Wang, Z. (2018). The reproductive and developmental toxicity of nanoparticles: A bibliometric analysis. Toxicology and Industrial Health, 34(3), 169-177. doi:10.1177/0748233717744430 Wells Iii, W. M., Crimson, W. E. L., Kikinis, R., & Jolesz, F. A. (1996). Adaptive segmentation of mri data. IEEE Transactions on Medical Imaging, 15(4), 429-442. doi:10.1109/42.511747 Weng, Y., Zhou, T., Li, Y., & Qiu, X. (2019). NAS-unet: Neural architecture search for medical image segmentation. IEEE Access, 7, 44247-44257. doi:10.1109/ACCESS.2019.2908991 Xue, Y., Xu, T., Zhang, H., Long, L. R., & Huang, X. (2018). SegAN: Adversarial network with multi-scale L 1 loss for medical image segmentation. Neuroinformatics, 16(3-4), 383-392. doi:10.1007/s12021-018-9377-x Yan, Z., Matuszewski, B. J., Shark, L. -., & Moore, C. J. (2008). Medical image segmentation using new hybrid level-set method. Paper presented at the Proceedings - 5th International Conference BioMedical Visualization, Information Visualization in Medical and Biomedical Informatics, MediVis 2008, 71-76. doi:10.1109/MediVis.2008.12 Retrieved from www.scopus.com Yezzi Jr., A., Kichenassamy, S., Kumar, A., Olver, P., & Tannenbaum, A. (1997). A geometric snake model for segmentation of medical imagery. IEEE Transactions on Medical Imaging, 16(2), 199-209. doi:10.1109/42.563665 Yu, H., He, F., & Pan, Y. (2019). A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation. Multimedia Tools and Applications, 78(9), 11779-11798. doi:10.1007/s11042-018-6735-5 Zhang, B., Rahmatullah, B., Wang, S. L., Zaidan, A. A., Zaidan, B. B., & Liu, P. (2020). A review of research on medical image confidentiality related technology coherent taxonomy, motivations, open challenges and recommendations. Multimedia Tools and Applications, doi:10.1007/s11042-020-09629-4 Zhang, D. -., & Chen, S. -. (2004). A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artificial Intelligence in Medicine, 32(1), 37-50. doi:10.1016/j.artmed.2004.01.012 Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. V., & Dalca, A. V. (2019). Data augmentation using learned transforms for one-shot medical image segmentation. Data Augmentation using Learned Transforms for One-Shot Medical Image Segmentation, , 8543-8553. Retrieved from www.scopus.com Zhou, S., Nie, D., Adeli, E., Yin, J., Lian, J., & Shen, D. (2020). High-resolution encoder-decoder networks for low-contrast medical image segmentation. IEEE Transactions on Image Processing, 29, 461-475. doi:10.1109/TIP.2019.2919937 Zhou, S., Wang, J., Zhang, S., Liang, Y., & Gong, Y. (2016). Active contour model based on local and global intensity information for medical image segmentation. Neurocomputing, 186, 107-118. doi:10.1016/j.neucom.2015.12.073 Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. UNet++: A Nested U-Net Architecture for Medical Image Segmentation, , 3-11. Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |