UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :QD Chemistry
ISSN :0925-4005
Main Author :‪Omar Al-Zuhairi‬
Additional Authors :Nur Azmina Mohamed Safian
Afiq Anuar
Bawazeer, Tahani M.
Alsenany, Nourah
Alsoufi, Mohammad S.
Supangat, Azzuliani
Nur Adilah Roslan
Title :Enhanced sensitivity of zinc phthalocyanine-based microporous humidity sensors by varying size of electrode gaps
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Corporate Name :Universiti Pendidikan Sultan Idris

Abstract : Universiti Pendidikan Sultan Idris
The use of organic materials has become an increasingly important issue in sensing devices in recent times. Phthalocyanine is among the most promising materials in this undertaking. Zinc phthalocyanine (ZnPc) based microporous device was fabricated and its capacitance was utilized as the sensing mechanism for a humidity sensor. The effect of the electrode gap of the device on the electrical properties was investigated along with the correlation between the device's performances and the morphology of the sensing film. Using the solution-processed spin coating method, the capacitive type humidity sensor devices have been fabricated in a planar geometry of Al/ZnPc/Al with the presence of a microporous template. The size of electrode gaps measured with a surface profiler was 53.00 ± 0.06 μm, 119.00 ± 0.03 μm and 286.00 ± 0.01 μm. The surface morphology was characterized by using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS). Analysis of the experimental results showed that the device with the shortest electrode gap (53.00 μm) produced the best sensitivity of 1.03 ± 0.04 pF/%RH than that of the longer gaps. Additionally, hysteresis as well as response and recovery performances have also been investigated.

References

Ahmad, Z., Sayyad, M. H., Saleem, M., Karimov, K. S., & Shah, M. (2008). Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Physica E: Low-Dimensional Systems and Nanostructures, 41(1), 18-22. doi:10.1016/j.physe.2008.05.018

Ali, S., Jameel, M. A., Gupta, A., Langford, S. J., & Shafiei, M. (2021). Capacitive humidity sensing performance of naphthalene diimide derivatives at ambient temperature. Synthetic Metals, 275 doi:10.1016/j.synthmet.2021.116739

Aziz, F., Bakar, A. A., Ahmad, Z., Bawazeer, T. M., Alsenany, N., Alsoufi, M. S., & Supangat, A. (2018). Template-assisted growth of nanoporous VTTBNc films: Morphology and moisture sensitivity studies. Materials Letters, 211, 195-198. doi:10.1016/j.matlet.2017.09.113

Azmer, M. I., Ahmad, Z., Sulaiman, K., & Al-Sehemi, A. G. (2015). Humidity dependent electrical properties of an organic material DMBHPET. Measurement: Journal of the International Measurement Confederation, 61, 180-184. doi:10.1016/j.measurement.2014.10.048

Azmer, M. I., Ahmad, Z., Sulaiman, K., Touati, F., Bawazeer, T. M., & Alsoufi, M. S. (2017). VOPcPhO:P3HT composite micro-structures with nano-porous surface morphology. Applied Surface Science, 399, 426-431. doi:10.1016/j.apsusc.2016.12.103

Azmer, M. I., Zafar, Q., Ahmad, Z., & Sulaiman, K. (2016). Humidity sensor based on electrospun MEH-PPV:PVP microstructured composite. RSC Advances, 6(42), 35387-35393. doi:10.1039/c6ra03628g

Chani, M. T. S., Karimov, K. S., Ahmad Khalid, F., Raza, K., Umer Farooq, M., & Zafar, Q. (2012). Humidity sensors based on aluminum phthalocyanine chloride thin films. Physica E: Low-Dimensional Systems and Nanostructures, 45, 77-81. doi:10.1016/j.physe.2012.07.012

Chani, M. T. S., Karimov, K. S., Khalid, F. A., & Moiz, S. A. (2013). Polyaniline based impedance humidity sensors. Solid State Sciences, 18, 78-82. doi:10.1016/j.solidstatesciences.2013.01.005

Chen, M., Wang, X., Yu, Y. H., Pei, Z. L., Bai, X. D., Sun, C., . . . Wen, L. S. (2000). X-ray photoelectron spectroscopy and auger electron spectroscopy studies of al-doped ZnO films. Applied Surface Science, 158(1), 134-140. doi:10.1016/S0169-4332(99)00601-7

Chen, Z., & Lu, C. (2005). Humidity sensors: A review of materials and mechanisms. Sensor Letters, 3(4), 274-295. doi:10.1166/sl.2005.045

Deng, X., Yang, L., Fu, Z., Du, C., Lyu, H., Cui, L., . . . Jia, B. (2021). A calibration-free capacitive moisture detection method for multiple soil environments. Measurement: Journal of the International Measurement Confederation, 173 doi:10.1016/j.measurement.2020.108599

Duan, Z., Jiang, Y., Yan, M., Wang, S., Yuan, Z., Zhao, Q., . . . Tai, H. (2019). Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Applied Materials and Interfaces, 11(24), 21840-21849. doi:10.1021/acsami.9b05709

Duan, Z., Jiang, Y., Zhao, Q., Wang, S., Yuan, Z., Zhang, Y., . . . Tai, H. (2020). Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology, 31(35) doi:10.1088/1361-6528/ab932c

Duan, Z., Zhang, Y., Tong, Y., Zou, H., Peng, J., & Zheng, X. (2017). Mixed-potential-type gas sensors based on Pt/YSZ Film/LaFeO3 for detecting NO2. Journal of Electronic Materials, 46(12), 6895-6900. doi:10.1007/s11664-017-5738-8

Duan, Z., Zhao, Q., Wang, S., Huang, Q., Yuan, Z., Zhang, Y., . . . Tai, H. (2020). Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sensors and Actuators, B: Chemical, 317 doi:10.1016/j.snb.2020.128204

Duan, Z., Zhao, Q., Wang, S., Yuan, Z., Zhang, Y., Li, X., . . . Tai, H. (2020). Novel application of attapulgite on high performance and low-cost humidity sensors. Sensors and Actuators, B: Chemical, 305 doi:10.1016/j.snb.2019.127534

Duan, Z. -., Zhao, Q. -., Li, C. -., Wang, S., Jiang, Y. -., & Zhang, Y. -. (2020). Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Metals, , 1-6. Retrieved from www.scopus.com

Dumitrescu, A. M., Lisa, G., Iordan, A. R., Tudorache, F., Petrila, I., Borhan, A. I., . . . Munteanu, C. (2015). Ni ferrite highly organized as humidity sensors. Materials Chemistry and Physics, 156, 170-179. doi:10.1016/j.matchemphys.2015.02.044

Farahani, H., Wagiran, R., & Hamidon, M. N. (2014). Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors (Switzerland), 14(5), 7881-7939. doi:10.3390/s140507881

Fatima, N., Aziz, F., Ahmad, Z., Najeeb, M. A., Azmeer, M. I., Karimov, K. S., . . . Sulaiman, K. (2017). Compositional engineering of the pi-conjugated small molecular VOPcPhO : Alq3 complex to boost humidity sensing. RSC Advances, 7(32), 19780-19786. doi:10.1039/c7ra02525d

Forrest, S. R. (2000). Active optoelectronics using thin-film organic semiconductors. IEEE Journal on Selected Topics in Quantum Electronics, 6(6), 1072-1083. doi:10.1109/2944.902156

Gaspar, C., Olkkonen, J., Passoja, S., & Smolander, M. (2017). Paper as active layer in inkjet-printed capacitive humidity sensors. Sensors (Switzerland), 17(7) doi:10.3390/s17071464

Goswami, M. P., Montazer, B., & Sarma, U. (2019). Design and characterization of a fringing field capacitive soil moisture sensor. IEEE Transactions on Instrumentation and Measurement, 68(3), 913-922. doi:10.1109/TIM.2018.2855538

Hamam, K. J., & Alomari, M. I. (2017). A study of the optical band gap of zinc phthalocyanine nanoparticles using UV–Vis spectroscopy and DFT function. Applied Nanoscience (Switzerland), 7(5), 261-268. doi:10.1007/s13204-017-0568-9

Hu, G., Zhou, R., Yu, R., Dong, L., Pan, C., & Wang, Z. L. (2014). Piezotronic effect enhanced schottky-contact ZnO micro/nanowire humidity sensors. Nano Research, 7(7), 1083-1091. doi:10.1007/s12274-014-0471-6

Islam, T., Kumar, L., & Khan, S. A. (2012). A novel sol-gel thin film porous alumina based capacitive sensor for measuring trace moisture in the range of 2.5-25 ppm. Sensors and Actuators, B: Chemical, 173, 377-384. doi:10.1016/j.snb.2012.07.014

Jha, R. K., Burman, D., Santra, S., & Guha, P. K. (2017). WS2/GO nanohybrids for enhanced relative humidity sensing at room temperature. IEEE Sensors Journal, 17(22), 7340-7347. doi:10.1109/JSEN.2017.2757243

Karimov, K. S., Saleem, M., Karieva, Z. M., Mateen, A., Chani, M. T. S., & Zafar, Q. (2012). Humidity sensing properties of cu 2O-PEPC nanocomposite films. Journal of Semiconductors, 33(7) doi:10.1088/1674-4926/33/7/073001

Kong, C., Li, M., Li, J., Ma, X., Feng, C., & Liu, X. (2019). One-step synthesis of Fe2O3 nano-rod modified reduced graphene oxide composites for effective cr(vi) removal: Removal capability and mechanism. RSC Advances, 9(36), 20582-20592. doi:10.1039/c9ra01892a

Lan, L., Le, X., Dong, H., Xie, J., Ying, Y., & Ping, J. (2020). One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosensors and Bioelectronics, 165 doi:10.1016/j.bios.2020.112360

Lee, C. -., Rhee, H. -., & Gong, M. -. (2001). Humidity sensor using epoxy resin containing quaternary ammonium salts. Sensors and Actuators, B: Chemical, 73(2-3), 124-129. doi:10.1016/S0925-4005(00)00668-7

Li, Y., Fan, K., Ban, H., & Yang, M. (2016). Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors. Sensors and Actuators, B: Chemical, 222, 151-158. doi:10.1016/j.snb.2015.08.052

Li, Z. -., Wu, J. -., Wang, X. -., Wang, K. -., Zhang, S., Xie, W. -., & Liao, L. -. (2019). Controllable fabrication of in-series organic heterostructures for optical waveguide application. Advanced Optical Materials, 7(19) doi:10.1002/adom.201900373

Matsuguchi, M., Takahashi, Y., Kuroiwa, T., Ogura, T., Obara, S., & Sakai, Y. (2003). Effect of sensing film thickness on drift phenomenon of capacitive-type humidity sensors. Journal of the Electrochemical Society, 150(8), H192-H195. doi:10.1149/1.1592522

Matsuguchi, M., Umeda, S., Sadaoka, Y., & Sakai, Y. (1998). Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sensors and Actuators, B: Chemical, 49 B49(3), 179-185. doi:10.1016/s0925-4005(98)00117-8

McGhee, J. R., Sagu, J. S., Southee, D. J., Evans, P. S. A., & Upul Wijayantha, K. G. (2020). Printed, fully metal oxide, capacitive humidity sensors using conductive indium tin oxide inks. ACS Applied Electronic Materials, 2(11), 3593-3600. doi:10.1021/acsaelm.0c00660

Raza, E., Asif, M., Aziz, F., Azmer, M. I., Malik, H. A., Teh, C. -., . . . Sulaiman, K. (2016). Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT2. Sensors and Actuators, B: Chemical, 235, 146-153. doi:10.1016/j.snb.2016.05.071

Rehman, K., Aziz, F., Ahmad, Z., Alamgir, K., Asif, M., Tahir, M., . . . Al-Thani, N. J. (2020). Improvement of capacitive humidity sensors using tris(8-hydroxyquinoline) gallium (Gaq3) nanofibers as a dielectric layer. Journal of Materials Science: Materials in Electronics, 31(23), 21702-21710. doi:10.1007/s10854-020-04683-y

Rivadeneyra, A., Salmerón, J. F., Agudo-Acemel, M., Capitan-Vallvey, L. F., López-Villanueva, J. A., & Palma, A. J. (2018). Asymmetric enhanced surface interdigitated electrode capacitor with two out-of-plane electrodes. Sensors and Actuators, B: Chemical, 254, 588-596. doi:10.1016/j.snb.2017.07.141

Roslan, N. A., Abu Bakar, A., Bawazeer, T. M., Alsoufi, M. S., Alsenany, N., Abdul Majid, W. H., & Supangat, A. (2019). Enhancing the performance of vanadyl phthalocyanine-based humidity sensor by varying the thickness. Sensors and Actuators, B: Chemical, 279, 148-156. doi:10.1016/j.snb.2018.09.109

Senthilarasu, S., Hahn, Y. B., & Lee, S. -. (2007). Structural analysis of zinc phthalocyanine (ZnPc) thin films: X-ray diffraction study. Journal of Applied Physics, 102(4) doi:10.1063/1.2771046

Senthilarasu, S., Velumani, S., Sathyamoorthy, R., Subbarayan, A., Ascencio, J. A., Canizal, G., . . . Perez, R. (2003). Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Applied Physics A: Materials Science and Processing, 77(3-4), 383-389. doi:10.1007/s00339-003-2184-7

Shinde, P. V., Saxena, M., & Singh, M. K. (2019). Recent developments in graphene-based two-dimensional heterostructures for sensing applications. Fundamentals and sensing applications of 2D materials (pp. 407-436) doi:10.1016/B978-0-08-102577-2.00011-7 Retrieved from www.scopus.com

Tahir, M., Sayyad, M. H., Clark, J., Wahab, F., Aziz, F., Shahid, M., . . . Chaudry, J. A. (2014). Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sensors and Actuators, B: Chemical, 192, 565-571. doi:10.1016/j.snb.2013.10.073

Tai, H., Duan, Z., Wang, Y., Wang, S., & Jiang, Y. (2020). Paper-based sensors for gas, humidity, and strain detections: A review. ACS Applied Materials and Interfaces, 12(28), 31037-31053. doi:10.1021/acsami.0c06435

Tripathy, A., Pramanik, S., Cho, J., Santhosh, J., & Osman, N. A. A. (2014). Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors (Switzerland), 14(9), 16343-16422. doi:10.3390/s140916343

Ueda, M., Nakamura, K., Tanaka, K., Kita, H., & Okamoto, K. -. (2007). Water-resistant humidity sensors based on sulfonated polyimides. Sensors and Actuators, B: Chemical, 127(2), 463-470. doi:10.1016/j.snb.2007.04.042

Velazquez, F. N., Miretti, M., Baumgartner, M. T., Caputto, B. L., Tempesti, T. C., & Prucca, C. G. (2019). Effectiveness of ZnPc and of an amine derivative to inactivate glioblastoma cells by photodynamic therapy: An in vitro comparative study. Scientific Reports, 9(1) doi:10.1038/s41598-019-39390-0

Wang, P., Wang, S. -., Kang, Y. -., Sun, Z. -., Wang, X. -., Meng, Y., . . . Xie, W. -. (2021). Cauliflower-shaped Bi2O3–ZnO heterojunction with superior sensing performance towards ethanol. Journal of Alloys and Compounds, 854 doi:10.1016/j.jallcom.2020.157152

Wang, Y., Hou, S., Li, T., Jin, S., Shao, Y., Yang, H., . . . Huang, J. (2020). Flexible capacitive humidity sensors based on ionic conductive wood-derived cellulose nanopapers. ACS Applied Materials and Interfaces, 12(37), 41896-41904. doi:10.1021/acsami.0c12868

Wang, Z., He, C., Song, W., Gao, Y., Chen, Z., Dong, Y., . . . Wu, Y. (2015). The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide-zinc(II)phthalocyanine hybrids. RSC Advances, 5(114), 94144-94154. doi:10.1039/c5ra18911j

Xu, J., & Liu, J. (2016). Facet-selective epitaxial growth of δ-Bi2O3 on ZnO nanowires. Chemistry of Materials, 28(22), 8141-8148. doi:10.1021/acs.chemmater.6b01739

Zhang, Y., Duan, Z., Zou, H., & Ma, M. (2018). Drawn a facile sensor: A fast response humidity sensor based on pencil-trace. Sensors and Actuators, B: Chemical, 261, 345-353. doi:10.1016/j.snb.2018.01.176

Zhang, Y., Learmonth, T., Wang, S., Matsuura, A. Y., Downes, J., Plucinski, L., . . . Smith, K. E. (2007). Electronic structure of the organic semiconductor vanadyl phthalocyanine (VO-pc). Journal of Materials Chemistry, 17(13), 1276-1283. doi:10.1039/b613274j

Zhao, Y., Yang, B., & Liu, J. (2018). Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sensors and Actuators, B: Chemical, 271, 256-263. doi:10.1016/j.snb.2018.05.084

Zhu, J., Li, Y., Chen, Y., Wang, J., Zhang, B., Zhang, J., & Blau, W. J. (2011). Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon, 49(6), 1900-1905. doi:10.1016/j.carbon.2011.01.014

Zhu, P., Liu, Y., Fang, Z., Kuang, Y., Zhang, Y., Peng, C., & Chen, G. (2019). Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film. Langmuir, 35(14), 4834-4842. doi:10.1021/acs.langmuir.8b04259

Zhuo, M. -., He, G. -., Yuan, Y., Tao, Y. -., Wei, G. -., Wang, X. -., . . . Liao, L. -. (2021). Super-stacking self-assembly of organic topological heterostructures. CCS Chemistry, 3(1), 413-424. doi:10.31635/ccschem.020.202000171

Zhuo, M. -., Wu, J. -., Wang, X. -., Tao, Y. -., Yuan, Y., & Liao, L. -. (2019). Hierarchical self-assembly of organic heterostructure nanowires. Nature Communications, 10(1) doi:10.1038/s41467-019-11731-7


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.