UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This paper proposed a fractional order PID sliding mode control (FOSMC-PID) for speed regulation of permanent magnet synchronous motor (PMSM). Fractional calculus has been incorporated in sliding mode controller (SMC) design to enhance chattering suppression ability. However, the design of fractional sliding surface is crucial to ensure that speed tracking accuracy is not jeopardized. The proposed controller is designed with a fractional order PID sliding surface, which balances the characteristics of sliding surface with PI or PD structure in terms of robustness and dynamic performance of the controller. By simulation, speed tracking is proven to be faster and more robust with the proposed controller compared to SMC with integer order. Both integration and derivative terms in the surface design outperform FOSMC-PI and FOSMC-PD in terms of disturbance rejection and chattering. Experimental validation proves the advantage of the proposed controller in terms of robustness. |
References |
Abdelhamid, D., Bouden, T., & Boulkroune, A. (2014). Design of fractional-order sliding mode controller (FSMC) for a class of fractional-order non-linear commensurate systems using a particle swarm optimization (PSO) algorithm. Control Engineering and Applied Informatics, 16(3), 46-55. Retrieved from www.scopus.com Calderón, A. J., Vinagre, B. M., & Feliu, V. (2006). Fractional order control strategies for power electronic buck converters. Signal Processing, 86(10), 2803-2819. doi:10.1016/j.sigpro.2006.02.022 Choi, H. H., & Jung, J. -. (2013). Discrete-time fuzzy speed regulator design for PM synchronous motor. IEEE Transactions on Industrial Electronics, 60(2), 600-607. doi:10.1109/TIE.2012.2205361 Delavari, H., Ghaderi, R., Ranjbar, A., & Momani, S. (2010). Fuzzy fractional order sliding mode controller for nonlinear systems. Communications in Nonlinear Science and Numerical Simulation, 15(4), 963-978. doi:10.1016/j.cnsns.2009.05.025 Efe, M. O. (2011). Fractional order systems in industrial automation-A survey. IEEE Transactions on Industrial Informatics, 7(4), 582-591. doi:10.1109/TII.2011.2166775 Efe, M. Ö. (2008). Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(6), 1561-1570. doi:10.1109/TSMCB.2008.928227 Errouissi, R., Ouhrouche, M., Chen, W. -., & Trzynadlowski, A. M. (2012). Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function. IEEE Transactions on Industrial Electronics, 59(7), 2849-2858. doi:10.1109/TIE.2011.2157276 Hsien, T. -., Sun, Y. -., & Tsai, M. -. (1997). H∞ control for a sensorless permanent-magnet synchronous drive. IEE Proceedings: Electric Power Applications, 144(3), 173-181. doi:10.1049/ip-epa:19970988 Huang, J., Cui, L., Shi, X., Li, H., & Xiang, Z. (2014). Composite integral sliding mode control for PMSM. Paper presented at the Proceedings of the 33rd Chinese Control Conference, CCC 2014, 8086-8090. doi:10.1109/ChiCC.2014.6896353 Retrieved from www.scopus.com Huang, J., Li, H., Teng, F., & Liu, D. (2012). Fractional order sliding mode controller for the speed control of a permanent magnet synchronous motor. Paper presented at the Proceedings of the 2012 24th Chinese Control and Decision Conference, CCDC 2012, 1203-1208. doi:10.1109/CCDC.2012.6244192 Retrieved from www.scopus.com Jafarov, E. M., Parlakçi, M. N. A., & Istefanopulos, Y. (2005). A new variable structure PID-controller design for robot manipulators. IEEE Transactions on Control Systems Technology, 13(1), 122-130. doi:10.1109/TCST.2004.838558 Ladaci, S., & Charef, A. (2006). On fractional adaptive control. Nonlinear Dynamics, 43(4), 365-378. doi:10.1007/s11071-006-0159-x Lanusse, P., Oustaloup, A., & Sabatier, J. (2014). Robust factional order PID controllers: The first generation CRONE CSD approach. Paper presented at the 2014 International Conference on Fractional Differentiation and its Applications, ICFDA 2014, doi:10.1109/ICFDA.2014.6967401 Retrieved from www.scopus.com Li, H., Luo, Y., & Chen, Y. (2010). A fractional order proportional and derivative (FOPD) motion controller: Tuning rule and experiments. IEEE Transactions on Control Systems Technology, 18(2), 516-520. doi:10.1109/TCST.2009.2019120 Li, M., Wang, F., & Gao, F. (2001). PID-based sliding mode controller for nonlinear processes. Industrial and Engineering Chemistry Research, 40(12), 2660-2667. doi:10.1021/ie990715e Li, S., Zhou, M., & Yu, X. (2013). Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Transactions on Industrial Informatics, 9(4), 1879-1891. doi:10.1109/TII.2012.2226896 li, S., Zong, K., & Liu, H. (2011). A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Transactions of the Institute of Measurement and Control, 33(5), 522-541. doi:10.1177/0142331210371814 Luo, Y., Chen, Y., Ahn, H. -., & Pi, Y. (2009). Fractional order periodic adaptive learning compensation for cogging effect in PMSM position servo system. Paper presented at the Proceedings of the American Control Conference, 937-942. doi:10.1109/ACC.2009.5160263 Retrieved from www.scopus.com Luo, Y., Chen, Y., Ahn, H. -., & Pi, Y. (2010). Fractional order robust control for cogging effect compensation in PMSM position servo systems: Stability analysis and experiments. Control Engineering Practice, 18(9), 1022-1036. doi:10.1016/j.conengprac.2010.05.005 Luo, Y., Chen, Y. Q., Ahn, H. -., & Pi, Y. G. (2012). Fractional order periodic adaptive learning compensation for state-dependent periodic disturbance. IEEE Transactions on Control Systems Technology, 20(2), 465-472. doi:10.1109/TCST.2011.2117426 Mujumdar, A., Tamhane, B., & Kurode, S. (2015). Observer-based sliding mode control for a class of noncommensurate fractional-order systems. IEEE/ASME Transactions on Mechatronics, 20(5), 2504-2512. doi:10.1109/TMECH.2014.2386914 Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5(4), 367-386. Retrieved from www.scopus.com Song, Q., & Jia, C. (2016). Robust speed controller design for permanent magnet synchronous motor drives based on sliding mode control. Paper presented at the Energy Procedia, , 88 867-873. doi:10.1016/j.egypro.2016.06.102 Retrieved from www.scopus.com Su, Y. X., Zheng, C. H., & Duan, B. Y. (2005). Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Transactions on Industrial Electronics, 52(3), 814-823. doi:10.1109/TIE.2005.847583 Sun, L., Zhang, X., Sun, L., & Zhao, K. (2013). Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Transactions on Power Electronics, 28(3), 1358-1365. doi:10.1109/TPEL.2012.2206610 Tavazoei, M. S., & Tavakoli-Kakhki, M. (2014). Compensation by fractional-order phase-lead/lag compensators. IET Control Theory and Applications, 8(5), 319-329. doi:10.1049/iet-cta.2013.0138 Utkin, V. I. (1993). Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics, 40(1), 23-36. doi:10.1109/41.184818 Vu, N. T. -., Choi, H. H., & Jung, J. -. (2012). Certainty equivalence adaptive speed controller for permanent magnet synchronous motor. Mechatronics, 22(6), 811-818. doi:10.1016/j.mechatronics.2012.04.007 Wang, A., Jia, X., & Dong, S. (2013). A new exponential reaching law of sliding mode control to improve performance of permanent magnet synchronous motor. IEEE Transactions on Magnetics, 49(5), 2409-2412. doi:10.1109/TMAG.2013.2240666 Xiaoguang, Z., Ke, Z., & Li, S. (2011). A PMSM sliding mode control system based on a novel reaching law. Paper presented at the 2011 International Conference on Electrical Machines and Systems, ICEMS 2011, doi:10.1109/ICEMS.2011.6073586 Retrieved from www.scopus.com Xu, W., Jiang, Y., & Mu, C. (2016). Novel composite sliding mode control for PMSM drive system based on disturbance observer. IEEE Transactions on Applied Superconductivity, 26(7) doi:10.1109/TASC.2016.2611623 Xu, W., Jiang, Y., Mu, C., & Yue, H. (2015). Nonsingular terminal sliding mode control for the speed regulation of permanent magnet synchronous motor with parameter uncertainties. Paper presented at the IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 1994-1999. doi:10.1109/IECON.2015.7392393 Retrieved from www.scopus.com Xu, W., Junejo, A. K., Liu, Y., & Islam, M. R. (2019). Improved continuous fast terminal sliding mode control with extended state observer for speed regulation of PMSM drive system. IEEE Transactions on Vehicular Technology, 68(11), 10465-10476. doi:10.1109/TVT.2019.2926316 Zaihidee, F. M., Mekhilef, S., & Mubin, M. (2019). Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor. IEEE Access, 7, 101765-101774. doi:10.1109/ACCESS.2019.2931324 Zaihidee, F. M., Mekhilef, S., & Mubin, M. (2018). Fractional order SMC for speed control of PMSM. Paper presented at the IEECON 2018 - 6th International Electrical Engineering Congress, doi:10.1109/IEECON.2018.8712281 Retrieved from www.scopus.com Zaihidee, F. M., Mekhilef, S., & Mubin, M. (2019). Robust speed control of pmsm using sliding mode control (smc)-a review. Energies, 12(9) doi:10.3390/en12091669 Zhang, B., Pi, Y., & Luo, Y. (2012). Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Transactions, 51(5), 649-656. doi:10.1016/j.isatra.2012.04.006 Zhang, B. T., & Pi, Y. (2012). Robust fractional order proportion-plus-differential controller based on fuzzy inference for permanent magnet synchronous motor. IET Control Theory and Applications, 6(6), 829-837. doi:10.1049/iet-cta.2011.0412 Zhou, J., & Wang, Y. (2002). Adaptive backstepping speed controller design for a permanent magnet synchronous motor. IEE Proceedings: Electric Power Applications, 149(2), 165-172. doi:10.1049/ip-epa:20020187 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |