UPSI Digital Repository (UDRep)



Abstract : Universiti Pendidikan Sultan Idris 
Recent years, the top 3 of world's export products were monopolized by Electronic and Electrical sector. In Malaysia, Electronic and Electrical is the main contributor of export since 1980s. However, the export performance of Malaysian Electronic and Electrical is often affected by several issues including competitors, financial crisis and global pandemic crisis. Hence, this article aims to investigate the relationship between Malaysian electronic and electrical export value and exchange rate using Bayesian method to fit a two components normal mixture model. Bayesian parameter estimation method is getting popular in time series data analysis due to its asymptotic properties which is then furnishes reliable results. Through Bayesian analysis, the finding reveals that there is a positive relationship between Malaysian electronic and electrical export value with exchange rate. Meanwhile, Malaysian Electronic and Electrical export price increase when there is an appreciation of exchange rate and vice versa. From this article, investors and traders can invest wisely through understanding of factor that affects Malaysian Electronic and Electrical sector. ? 2021 RIGEO. All Rights Reserved. 
References 
Al Mamun, A., Rahman, M. K., Taufiq, M., & Muzzammir. (2015). A shiftshare analysis of electrical and electronic products: An overview and assessment of export growth of malaysia. Asian Social Science, 11(10), 330338. doi:10.5539/ass.v11n10p330 Beerli, P. (2006). Comparison of bayesian and maximumlikelihood inference of population genetic parameters. Bioinformatics, 22(3), 341345. doi:10.1093/bioinformatics/bti803 Chavosha, A., Halimi, A. B., Soheilirad, S., Ghajarzadeh, A., & Nourizadehe, A. (2011). Customer responsiveness and export performance of selected electronic equipment export companies in malaysia. International Conference on Social Science and Humanity, 5, 124127. Retrieved from www.scopus.com Chowdhury, M. S. R., & Hossain, M. T. (2014). Determinants of exchange rate in bangladesh: A case study. Journal of Economics and Sustainable Development, 5(1) Retrieved from www.scopus.com Cooper, G. F., & Herskovits, E. (1992). A bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309347. doi:10.1023/A:1022649401552 Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56(3), 463474. Retrieved from www.scopus.com Do, K. ., MÃ¼ller, P., & Tang, F. (2005). A bayesian mixture model for differential gene expression. Journal of the Royal Statistical Society.Series C: Applied Statistics, 54(3), 627644. doi:10.1111/j.14679876.2005.05593.x Eirola, E., & Lendasse, A. (2013). Gaussian mixture models for time series modelling, forecasting and interpolation. IDA, Retrieved from www.scopus.com Feng, X., & Xie, D. (2012). Bayesian estimation of CIR model. Journal of Data Science, 10(2), 271280. Retrieved from www.scopus.com Ghosh, S. K., Mukhopadhyay, P., & Lu, J. . (2006). Bayesian analysis of zeroinflated regression models. Journal of Statistical Planning and Inference, 136(4), 13601375. doi:10.1016/j.jspi.2004.10.008 Hada, T., Avram, T. M., & BarbutaMisu, N. (2018). The impact of EUR/RON exchange rate policy on romanian exports. Economic and Applied Informatics, 1, 514. Retrieved from www.scopus.com Hu, X., Johnson, V., Wong, W. H., & Chen, C. . (1991). Bayesian image processing in magnetic resonance imaging. Magnetic Resonance Imaging, 9(4), 611620. doi:10.1016/0730725X(91)90049R Kamaruzzaman, Z. A., Isa, Z., & Ismail, M. T. (2012). Mixtures of normal distributions: Application to bursa malaysia stock market indices. World Applied Sciences Journal, 16(6), 781790. Retrieved from www.scopus.com Laplace, P. S. (1986). Memoir on the probability of the causes of events. Statistical Science, 1(3), 364378. doi:10.1214/ss/1177013621 Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., & FernandezBouzas, A. (2002). An accurate and efficient bayesian method for automatic segmentation of brain MRI. IEEE Transactions on Medical Imaging, 21(8), 934945. doi:10.1109/TMI.2002.803119 McLachlan, G. J., & Peel, D. (2000). Finite Mixture Models, Retrieved from www.scopus.com McLachlan, G. J., Peel, D., Basford, K. E., & Adams, P. (1999). The EMMIX software for the fitting of mixtures of normal and tcomponents. Journal of Statistical Software, 4, 114. Retrieved from www.scopus.com Phoong, S. ., & Ismail, M. T. (2015). A comparison between bayesian and maximum likelihood estimations in estimating finite mixture model for financial data. Sains Malaysiana, 44(7), 10331039. doi:10.17576/jsm2015440716 Phoong, S. ., & Ismail, M. T. (2014). A study of finite mixture model: Bayesian approach on financial time series data. Paper presented at the AIP Conference Proceedings, , 1605 805809. doi:10.1063/1.4887693 Retrieved from www.scopus.com Phoong, S. Y., Ismail, M. T., Phoong, S. W., & Abdul Rahman, R. B. (2016). Finite mixture model: A comparison method for nonlinear time series data. International Journal of Computing Science and Mathematics, 7(4), 381393. doi:10.1504/IJCSM.2016.078684 Rambeli, N., Podivinsky, J., Hashim, A., & Hashim, E. (2014). Issues on exchange rate volatility & exports nexus"A case for asean". Management Research Journal, 3(2014), 164184. Retrieved from www.scopus.com Roberts, S. J., Husmeier, D., Rezek, I., & Penny, W. (1998). Bayesian approaches to gaussian mixture modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 11331142. doi:10.1109/34.730550 Yeung, K. Y., Bumgarner, R. E., & Raftery, A. E. (2005). Bayesian model averaging: Development of an improved multiclass, gene selection and classification tool for microarray data. Bioinformatics, 21(10), 23942402. doi:10.1093/bioinformatics/bti319 
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. 