UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Silver nanoparticles (AgNP) have been used in many medical and biological applications due to their unique features and characteristics. One of the most important issues researchers address in nanoscience is finding suitable methods to produce nanoparticles with environmentally friendly and non-toxic properties. The unique chemical, physical and biological properties that AgNP possesses give that impetus to developing their production methods. In recent years, there have been many studies documented for the production of AgNP during the development of green synthesis methods (GSM). The present study describes methods for the GSM of AgNP, their biological properties, and other applications, giving the most appropriate methods to synthesize AgNP.AgNP is one of the essential metallic particles, as they can be manufactured and designed in easy ways, and they are also adjustable because they were used in many fields such as catalysts, ideal biometrics, and photo-controlled delivery Systems. AgNp is beholden as a prospectively for tissue regeneration in bioengineering due to its ability in the delivery system as an ideal gene. The studies examined in the current study demonstrated the ability of AgNP in many medical applications because they possess antibacterial properties, and their toxicity can be reduced according to the recorded reports. ? 2021, Dr. Yashwant Research Labs Pvt. Ltd. All rights reserved. |
References |
Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta, 411(23-24), 1841-1848. doi:10.1016/j.cca.2010.08.016 Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17-28. doi:10.1016/j.jare.2015.02.007 Al Juraifani, A., & Ghazwani, A. (2015). Biosynthesis of silver nanoparticles by aspergillus niger, fusariumoxysporum and alternaria solani. Afr J Biotechnol, 14(26), 2170-2174. Retrieved from www.scopus.com Alarcon, E. I., Udekwu, K., Skog, M., Pacioni, N. L., Stamplecoskie, K. G., González-Béjar, M., . . . Scaiano, J. C. (2012). The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials, 33(19), 4947-4956. doi:10.1016/j.biomaterials.2012.03.033 Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y. K., & Kim, K. H. (2017). Green synthesis of silver nanoparticles using rheum palmatum root extract and their antibacterial activity against staphylococcus aureus and pseudomonas aeruginosa. Artificial Cells, Nanomedicine and Biotechnology, 45(2), 372-379. doi:10.3109/21691401.2016.1160403 Arun, G., Eyini, M., & Gunasekaran, P. (2014). Green synthesis of silver nanoparticles using the mushroom fungus schizophyllum commune and its biomedical applications. Biotechnology and Bioprocess Engineering, 19(6), 1083-1090. doi:10.1007/s12257-014-0071- Ashkarran, A. A. (2010). A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Current Applied Physics, 10(6), 1442-1447. doi:10.1016/j.cap.2010.05.010 Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233. doi:10.1016/j.apjtb.2016.12.014 Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus fusarium semitectum. Materials Research Bulletin, 43(5), 1164-1170. doi:10.1016/j.materresbull.2007.06.020 Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus fusarium semitectum. Materials Research Bulletin, 43(5), 1164-1170. doi:10.1016/j.materresbull.2007.06.020 Baskar, G., Sathivel, K., & George, G. B. (2016). In vitro cytotoxicity of copper oxide nanobiocomposites synthesized by catharanthus roseus flower extract against breast cancer cell line. Journal of Chemical and Pharmaceutical Sciences, 9(1), 211-214. Retrieved from www.scopus.com Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., & Hazan, R. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015 doi:10.1155/2015/246012 Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., & Rai, M. K. (2009). Fabrication of silver nanoparticles by phoma glomerata and its combined effect against escherichia coli, pseudomonas aeruginosa and staphylococcus aureus. Letters in Applied Microbiology, 48(2), 173-179. doi:10.1111/j.1472-765X.2008.02510.x Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., & Rai, M. K. (2009). Fabrication of silver nanoparticles by phoma glomerata and its combined effect against escherichia coli, pseudomonas aeruginosa and staphylococcus aureus. Letters in Applied Microbiology, 48(2), 173-179. doi:10.1111/j.1472-765X.2008.02510.x Das, V. L., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. (2014). Extracellular synthesis of silver nanoparticles by the bacillus strain CS 11 isolated from industrialized area. 3 Biotech, 4(2), 121-126. Retrieved from www.scopus.com Devi, G. K., Suruthi, P., Veerakumar, R., Vinoth, S., Subbaiya, R., & Chozhavendhan, S. (2019). A review on metallic gold and silver nanoparticles. Research Journal of Pharmacy and Technology, 12(2), 935-943. doi:10.5958/0974-360X.2019.00158.6 Du, J., & Yi, T. -. (2016). Biosynthesis of silver nanoparticles by variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Materials Letters, 178, 75-78. doi:10.1016/j.matlet.2016.04.069 Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 103-109. doi:10.1016/j.nano.2009.04.006 Francis, S., Joseph, S., Koshy, E. P., & Mathew, B. (2018). Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artificial Cells, Nanomedicine and Biotechnology, 46(4), 795-804. doi:10.1080/21691401.2017.1345921 Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 5(4), 382-386. doi:10.1016/j.nano.2009.06.005 Ghorbani, H. R. (2013). Biosynthesis of silver nanoparticles by escherichia coli. Asian Journal of Chemistry, 25(3), 1247-1249. Retrieved from www.scopus.com Guzmán, M. G., Dille, J., & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int.J.Chem.Biol.Eng., 2(3), 104-111. Retrieved from www.scopus.com Hadad, L., Perkas, N., Gofer, Y., Calderon-Moreno, J., Ghule, A., & Gedanken, A. (2007). Sonochemical deposition of silver nanoparticles on wool fibers. Journal of Applied Polymer Science, 104(3), 1732-1737. doi:10.1002/app.25813 Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. D., Rojo, T., . . . Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:10.1016/j.tibtech.2012.06.004 Han, Y., Jiang, J., Lee, S. S., & Ying, J. Y. (2008). Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir, 24(11), 5842-5848. doi:10.1021/la703440p Handoko, C. T., Huda, A., & Gulo, F. (2019). Synthesis pathway and powerful antimicrobial properties of silver nanoparticle: A critical review. Asian J.Sci.Res, 12(1), 1-17. Retrieved from www.scopus.com Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12(1), 7-11. doi:10.4314/tjpr.v12i1.2 Ingle, A., Gade, A., Pierrat, S., Sönnichsen, C., & Rai, M. (2008). Mycosynthesis of silver nanoparticles using the fungus fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience, 4(2), 141-144. doi:10.2174/157341308784340804 Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385-406. Retrieved from www.scopus.com Jha, A. K., Prasad, K., Kumar, V., & Prasad, K. (2009). Biosynthesis of silver nanoparticles using eclipta leaf. Biotechnology Progress, 25(5), 1476-1479. doi:10.1002/btpr.233 Kalaiselvi, D., Mohankumar, A., Shanmugam, G., Nivitha, S., & Sundararaj, P. (2019). Green synthesis of silver nanoparticles using latex extract of euphorbia tirucalli: A novel approach for the management of root knot nematode, meloidogyne incognita. Crop Protection, 117, 108-114. doi:10.1016/j.cropro.2018.11.020 Kasithevar, M., Saravanan, M., Prakash, P., Kumar, H., Ovais, M., Barabadi, H., & Shinwari, Z. K. (2017). Green synthesis of silver nanoparticles using alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J.Interdiscip.Nanomed., 2(2), 131-141. Retrieved from www.scopus.com Kathiresan, K., Manivannan, S., Nabeel, M. A., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71(1), 133-137. doi:10.1016/j.colsurfb.2009.01.016 Khan, A., El-Toni, A. M., Alrokayan, S., Alsalhi, M., Alhoshan, M., & Aldwayyan, A. S. (2011). Microwave-assisted synthesis of silver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgel particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1-3), 356-360. doi:10.1016/j.colsurfa.2011.01.042 Khayati, G. R., & Janghorban, K. (2012). The nanostructure evolution of ag powder synthesized by high energy ball milling. Advanced Powder Technology, 23(3), 393-397. doi:10.1016/j.apt.2011.05.005 Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. -. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13611-13614. doi:10.1073/pnas.96.24.13611 Korbekandi, H., Iravani, S., & Abbasi, S. (2012). Optimization of biological synthesis of silver nanoparticles using lactobacillus casei subsp. casei. Journal of Chemical Technology and Biotechnology, 87(7), 932-937. doi:10.1002/jctb.3702 Korösi, L., Rodio, M., Dömötör, D., Kovács, T., Papp, S., Diaspro, A., . . . Beke, S. (2016). Ultrasmall, ligand-free ag nanoparticles with high antibacterial activity prepared by pulsed laser ablation in liquid. Journal of Chemistry, 2016 doi:10.1155/2016/4143560 Kumar, N., Alam, F., & Dutta, V. (2014). Deposition of ag and au-ag alloy nanoparticle films by spray pyrolysis technique with tuned plasmonic properties. Journal of Alloys and Compounds, 585, 312-317. doi:10.1016/j.jallcom.2013.09.145 Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Vanaja, M., Jobitha, G. D. G., & Annadurai, G. (2013). Bactericidal activity of bio mediated silver nanoparticles synthesized by serratia nematodiphila. Drug Invention Today, 5(2), 119-125. doi:10.1016/j.dit.2013.05.005 Manivasagan, P., Venkatesan, J., Senthilkumar, K., Sivakumar, K., & Kim, S. -. (2013). Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel nocardiopsis sp. MBRC-1. BioMed Research International, 2013 doi:10.1155/2013/287638 Manosalva, N., Tortella, G., Cristina Diez, M., Schalchli, H., Seabra, A. B., Durán, N., & Rubilar, O. (2019). Green synthesis of silver nanoparticles: Effect of synthesis reaction parameters on antimicrobial activity. World Journal of Microbiology and Biotechnology, 35(6) doi:10.1007/s11274-019-2664-3 Miranzadeh, M., & Kassaee, M. Z. (2014). Solvent effects on arc discharge fabrication of durable silver nanopowder and its application as a recyclable catalyst for elimination of toxic p-nitrophenol. Chemical Engineering Journal, 257, 105-111. doi:10.1016/j.cej.2014.06.088 Mudhafar, M., Zainol, I., Jaafar, C. N. A., Alsailawi, H. A., & Majhool, A. A. (2020). Microwave-assisted green synthesis of ag nanoparticles using leaves of melia dubia (neem) and its antibacterial activities. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65(1), 121-129. Retrieved from www.scopus.com Mudhafar, M., Zainol, I., Jaafar, C. N. A., Alsailawi, H. A., & Majhool, A. A. (2020). Microwave-assisted green synthesis of ag nanoparticles using leaves of melia dubia (neem) and its antibacterial activities. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 65(1), 121-129. Retrieved from www.scopus.com Nanda, A., & Majeed, S. (2014). Enhanced antibacterial efficacy of biosynthesized AgNPs from penicillium glabrum (MTCC1985) pooled with different drugs. International Journal of PharmTech Research, 6(1), 217-223. Retrieved from www.scopus.com Nanda, A., Zarina, A., & Nayak, B. K. (2011). Extra/intracellular biosynthesis of silver nanoparticles from potential bacterial species. Paper presented at the Proceedings of the International Conference on Nanoscience, Engineering and Technology, ICONSET 2011, 446-449. doi:10.1109/ICONSET.2011.6168000 Retrieved from www.scopus.com Natsuki, J., Natsuki, T., & Hashimoto, Y. (2015). A review of silver nanoparticles: Synthesis methods, properties and applications. Int.J.Mater.Sci.Appl., 4(5), 325-332. Retrieved from www.scopus.com Otari, S. V., Patil, R. M., Ghosh, S. J., Thorat, N. D., & Pawar, S. H. (2015). Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 136(PB), 1175-1180. doi:10.1016/j.saa.2014.10.003 Padman, A. J., Henderson, J., Hodgson, S., & Rahman, P. K. S. M. (2014). Biomediated synthesis of silver nanoparticles using exiguobacterium mexicanum. Biotechnology Letters, 36(10), 2079-2084. doi:10.1007/s10529-014-1579-1 Perito, B., Giorgetti, E., Marsili, P., & Muniz-Miranda, M. (2016). Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution. Beilstein Journal of Nanotechnology, 7(1), 465-473. doi:10.3762/bjnano.7.40 Pugazhenthiran, N., Anandan, S., Kathiravan, G., Udaya Prakash, N. K., Crawford, S., & Ashokkumar, M. (2009). Microbial synthesis of silver nanoparticles by bacillus sp. Journal of Nanoparticle Research, 11(7), 1811-1815. doi:10.1007/s11051-009-9621-2 Radha, K. V., & Thamilselvi, V. (2013). Synthesis of silver nanoparticles from pseudomonas putida NCIM 2650 in silver nitrate supplemented growth medium and optimization using response surface methodology. Digest Journal of Nanomaterials and Biostructures, 8(3), 1101-1111. Retrieved from www.scopus.com Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine and Biotechnology, 45(7), 1272-1291. doi:10.1080/21691401.2016.1241792 Raheman, F., Deshmukh, S., Ingle, A., Gade, A., & Rai, M. (2011). Silver nanoparticles: Novel antimicrobial agent synthesized from an endophytic fungus pestalotia sp. isolated from leaves of syzygium cumini (L). Nano Biomedicine and Engineering, 3(3), 174-178. doi:10.5101/nbe.v3i3.p174-178 Rajeshkumar, S., Malarkodi, C., Paulkumar, K., Vanaja, M., Gnanajobitha, G., & Annadurai, G. (2013). Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria vibrio alginolyticus. Nanoscience and Nanotechnology, 3(1), 21-25. Retrieved from www.scopus.com Ranganath, E., Rathod, V., & Banu, A. (2012). Screening of lactobacillus spp, for mediating the biosynthesis of silver nanoparticles from silver nitrate. Journal of Pharmacy, 2(2), 237-241. Retrieved from www.scopus.com Raudabaugh, D. B., Tzolov, M. B., Calabrese, J. P., & Overton, B. E. (2013). Synthesis of silver nanoparticles by a bryophilous rhizoctonia species. Nanomaterials and Nanotechnology, 3(1) doi:10.5772/56207 Shelar, G. B., & Chavan, A. M. (2014). Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. Int J Biomed Adv Res, 5(7), 348-351. Retrieved from www.scopus.com Shelar, G. B., & Chavan, A. M. (2015). Myco-synthesis of silver nanoparticles from trichoderma harzianum and its impact on germination status of oil seed. Biolife, 3(1), 109-113. Retrieved from www.scopus.com Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1) doi:10.1186/s12951-018-0334-5 Singh, H., Du, J., & Yi, T. -. (2017). Biosynthesis of silver nanoparticles using aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes. Artificial Cells, Nanomedicine and Biotechnology, 45(3), 584-590. doi:10.3109/21691401.2016.1163715 Solati, E., & Dorranian, D. (2015). Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. Journal of Cluster Science, 26(3), 727-742. doi:10.1007/s10876-014-0732-2 Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K., & Upadhyay, S. N. (2016). Green synthesis of silver nanoparticles: A review. Green Sustain.Chem., 6(1), 34-56. Retrieved from www.scopus.com Suman, J., Neeraj, S., Rahul, J., & Sushila, K. (2014). Microbial synthesis of silver nanoparticles by actinotalea sp. MTCC 10637. American Journal of Phytomedicine and Clinical Therapeutics, 2(8), 1016-1023. Retrieved from www.scopus.com Suresh, A. K., Pelletier, D. A., Wang, W., Moon, J. -., Gu, B., Mortensen, N. P., . . . Doktycz, M. J. (2010). Silver nanocrystallites: Biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environmental Science and Technology, 44(13), 5210-5215. doi:10.1021/es903684r Syed, B., Rao, H. C. Y., Nagendra-Prasad, M. N., Prasad, A., Harini, B. P., Azmath, P., . . . Satish, S. (2016). Biomimetic synthesis of silver nanoparticles using endosymbiotic bacterium inhabiting euphorbia hirta L. and their bactericidal potential. Scientifica, 2016 doi:10.1155/2016/9020239 Tokoi, Y., Josho, K., Izuari, Y. M., Suzuki, T., Nakayama, T., Suematsu, H., . . . Niihara, K. (2011). Particle size control of silver nanoparticles prepared by pulsed wire discharge in liquid media. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 20(1) doi:10.1088/1757-899X/20/1/012008 Retrieved from www.scopus.com Tsibakhashvil, N., Kalabegishvili, T., Gabunia, V., Gintury, E., Kuchava, N., Bagdavadze, N., . . . Lomidze, L. (2010). Synthesis of silver nanoparticles using bacteria. Nano Studies, 2, 179-182. Retrieved from www.scopus.com Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus trichoderma reesei. Insciences J, 1(1), 65-79. Retrieved from www.scopus.com Valverde-Alva, M. A., García-Fernández, T., Villagrán-Muniz, M., Sánchez-Aké, C., Castañeda-Guzmán, R., Esparza-Alegría, E., . . . Herrera, C. E. M. (2015). Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study. Applied Surface Science, 355, 341-349. doi:10.1016/j.apsusc.2015.07.133 Verma, V. C., Kharwar, R. N., & Gange, A. C. (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus aspergillus clavatus. Nanomedicine, 5(1), 33-40. doi:10.2217/nnm.09.77 Vijayan, R., Joseph, S., & Mathew, B. (2018). Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artificial Cells, Nanomedicine and Biotechnology, 46(4), 861-871. doi:10.1080/21691401.2017.1345930 Wanarska, E., & Maliszewska, I. (2019). The possible mechanism of the formation of silver nanoparticles by penicillium cyclopium. Bioorganic Chemistry, 93 doi:10.1016/j.bioorg.2019.02.028 Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine and Biotechnology, 44(4), 1127-1132. doi:10.3109/21691401.2015.1011805 Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z. -., & Chen, G. (2015). Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discovery Today, 20(5), 595-601. doi:10.1016/j.drudis.2014.11.014 Wu, S., Zhao, H., Ju, H., Shi, C., & Zhao, J. (2006). Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochemistry Communications, 8(8), 1197-1203. doi:10.1016/j.elecom.2006.05.013 Yang, Y., Matsubara, S., Xiong, L., Hayakawa, T., & Nogami, M. (2007). Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. Journal of Physical Chemistry C, 111(26), 9095-9104. doi:10.1021/jp068859b Yashavantha Rao, H., Nagendra-Prasad, M., Prasad, A., Harini, B., Azmath, P., Rakshith, D., & Satish, S. (2016). Biomimetic synthesis of silver nanoparticles using endosymbiotic bacterium inhabiting euphorbia hirta L. and their bactericidal potential. Scientifica, Retrieved from www.scopus.com Zhang, H., Zou, G., Liu, L., Tong, H., Li, Y., Bai, H., & Wu, A. (2017). Synthesis of silver nanoparticles using large-area arc discharge and its application in electronic packaging. Journal of Materials Science, 52(6), 3375-3387. doi:10.1007/s10853-016-0626-9 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |