UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :L Education
ISBN :9789813368347
ISSN :18650929
Main Author :Azmi Shawkat Abdulbaqi
Additional Authors :Panessai, Ismail Yusuf
Title :A tele encephalopathy diagnosis based on eeg signal compression and encryption
Place of Production :Tanjung Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2021
Notes :Communications in Computer and Information Science
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
A Telemedicine network that uses connectivity and information technology to transmit medical signals such as neurological signals Electroencephalography (EEG) has become a reality for medical services of long distances. In the monitoring of mobile healthcare, these signals need to be compressed for the efficient utilization of bandwidth and the confidentiality of these signals, where compression is a critical tool to solve storage and transmission problems and can then retrieve the original signal (OS) from the compressed signal. The objective of this manuscript is to achieve higher compression gains at a low bit rate while maintaining the integrity of clinical details and also encrypting the signal to keep it private, except for specialists. Thresholding techniques are utilized in the compression stage, the Discrete Wavelet Transform (DWT). Instead, Huffman Encoding (HuFE) is utilized for compression and EEG signal encryption with chaos. This manuscript addresses the encoding of EEG signals with consistency for Telemedicine applications. To test the proposed method, overall compression and reconstruction (ComRec) time (T) was measured, the root mean square (RMSE), and the compression ratio (CR). Findings from the simulation show that the addition of HuFE after the DWT algorithm gives the best CR and complexity efficiency. The findings show that the consistency of the reconstructed signal (Rs) is maintained at a low PRD while yielding better findings in compression. Utilizing the DWT as a loss compression algorithm followed by the HuFE as a lossy compression algorithm, CR = 92.9% at RMS = 0.16 and PRD = 5. 4131%. ? 2021, Springer Nature Singapore Pte Ltd.

References

Abbasinezhad-Mood, D., & Nikooghadam, M. (2018). Efficient design of a novel ECC-based public key scheme for medical data protection by utilization of NanoPi fire. IEEE Transactions on Reliability, 67(3), 1328-1339. doi:10.1109/TR.2018.2850966

Abd El-Latif, A. A., Abd-El-Atty, B., Hossain, M. S., Rahman, M. A., Alamri, A., & Gupta, B. B. (2018). Efficient quantum information hiding for remote medical image sharing. IEEE Access, 6, 21075-21083. doi:10.1109/ACCESS.2018.2820603

Abdulbaqi, A. S., Najim, S. A. -. M., & Mahdi, R. H. (2018). Robust multichannel EEG signals compression model based on hybridization technique. International Journal of Engineering and Technology(UAE), 7(4), 3402-3405. doi:10.14419/ijet.v7i4.14513

Abdulbaqi, A. S., Saif, S. A. -. M. N., Falath, F. M. M., & Nawar, N. A. I. (2019). A proposed technique based on wavelet transform for electrocardiogram signal compression. Paper presented at the Proceedings - 2018 1st Annual International Conference on Information and Sciences, AiCIS 2018, 229-234. doi:10.1109/AiCIS.2018.00049 Retrieved from www.scopus.com

Akmandor, A. O., Yin, H., & Jha, N. K. (2018). Simultaneously ensuring smartness, security, and energy efficiency in internet-of-things sensors. Paper presented at the 2018 IEEE Custom Integrated Circuits Conference, CICC 2018, 1-8. doi:10.1109/CICC.2018.8357069 Retrieved from www.scopus.com

Alsenwi, M., Ismail, T., & Mostafa, H. (2016). Performance analysis of hybrid lossy/lossless compression techniques for EEG data. Paper presented at the Proceedings of the International Conference on Microelectronics, ICM, , 0 1-4. doi:10.1109/ICM.2016.7847849 Retrieved from www.scopus.com

Alsenwi, M., Saeed, M., Ismail, T., Mostafa, H., & Gabran, S. (2017). Hybrid compression technique with data segmentation for electroencephalography data. 29th International Conference on Microelectronics (ICM2017), , 235-238. Retrieved from www.scopus.com

Anas, H., Latif, R., & Arioua, M. (2017). Efficient electrocardiogram (ECG) lossy compression scheme for real time e-health monitoring. International Journal of Biology and Biomedical Engineering, 11, 101-114. Retrieved from www.scopus.com

Ara, A., Jr., Al-Rodhaan, M., Tian, Y., & Al-Dhelaan, A. (2017). A secure privacy-preserving data aggregation scheme based on bilinear ElGamal cryptosystem for remote health monitoring systems. IEEE Access, 5, 12601-12617. doi:10.1109/ACCESS.2017.2716439

Boussif, M., Aloui, N., & Cherif, A. (2018). Secured cloud computing for medical data based on watermarking and encryption. IET Networks, 7(5), 294-298. doi:10.1049/iet-net.2017.0180

Chen, C. -., Wu, C., Abu, P. A. R., & Chen, S. -. (2018). VLSI implementation of an efficient lossless EEG compression design for wireless body area network. Applied Sciences (Switzerland), 8(9) doi:10.3390/app8091474

Datta, B., Pal, P. K., & Bandyopadhyay, S. K. (2018). Audio transmission of medical reports for visa processing: A solution for the spread of communicable diseases by the immigrant population. IEEE Consumer Electronics Magazine, 7(5), 27-33. doi:10.1109/MCE.2018.2835898

Dhar, S., Mukhopadhyay, S. K., Pal, S., & Mitra, M. (2018). An efficient data compression and encryption technique for PPG signal. Measurement: Journal of the International Measurement Confederation, 116, 533-542. doi:10.1016/j.measurement.2017.11.006

Feli, M., & Abdali-Mohammadi, F. (2019). 12 lead electrocardiography signals compression by a new genetic programming based mathematical modeling algorithm. Biomedical Signal Processing and Control, 54 doi:10.1016/j.bspc.2019.101596

Feng, L., Sun, H., Sun, Q., & Xia, G. (2016). Compressive sensing via nonlocal low-rank tensor regularization. Neurocomputing, 216, 45-60. doi:10.1016/j.neucom.2016.07.012

Feng, L., Sun, H., Sun, Q., & Xia, G. (2016). Image compressive sensing via truncated schatten-p norm regularization. Signal Processing: Image Communication, 47, 28-41. doi:10.1016/j.image.2016.05.012

Fira, M. (2017). The EEG signal classification in compressed sensing space. the twelfth international multi-conference on computing in the global information technology, ICCGI 2017. 23 –27 July, 2017 Retrieved from www.scopus.com

George, L. E., & Hadi, H. A. (2019). User identification and verification from a pair of simultaneous EEG channels using transform based features. IJIMAI, 5(5), 54-62. Retrieved from www.scopus.com

Gupta, A., Chakraborty, C., & Gupta, B. (2019). Medical information processing using smartphone under IoT framework doi:10.1007/978-981-13-7399-2_12 Retrieved from www.scopus.com

Gupta, S., & Banerjee, A. (2017). U.S.Patent no.9,626,521, Retrieved from www.scopus.com

Hejrati, B., Fathi, A., & Abdali-Mohammadi, F. (2017). A new near-lossless EEG compression method using ANN-based reconstruction technique. Computers in Biology and Medicine, 87, 87-94. doi:10.1016/j.compbiomed.2017.05.024

Hu, G., Xiao, D., Xiang, T., Bai, S., & Zhang, Y. (2017). A compressive sensing based privacy preserving outsourcing of image storage and identity authentication service in cloud. Information Sciences, 387, 132-145. doi:10.1016/j.ins.2016.09.045

Liu, T. Y., Lin, K. J., & Wu, H. C. (2018). ECG data encryption then compression using singular value decomposition. IEEE Journal of Biomedical and Health Informatics, 22(3), 707-713. doi:10.1109/JBHI.2017.2698498

Luo, E., Bhuiyan, M. Z. A., Wang, G., Rahman, M. A., Wu, J., & Atiquzzaman, M. (2018). PrivacyProtector: Privacy-protected patient data collection in IoT-based healthcare systems. IEEE Communications Magazine, 56(2), 163-168. doi:10.1109/MCOM.2018.1700364

Mavinkattimath, S. G., Khanai, R., & Torse, D. A. (2019). A survey on secured wireless body sensor networks. Paper presented at the Proceedings of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, 872-875. doi:10.1109/ICCSP.2019.8698032 Retrieved from www.scopus.com

Milev, D. (2020). Processing and Transmission of EEG Signals, Retrieved from www.scopus.com

Murillo-Escobar, M. A., Cardoza-Avendaño, L., López-Gutiérrez, R. M., & Cruz-Hernández, C. (2017). A double chaotic layer encryption algorithm for clinical signals in telemedicine. Journal of Medical Systems, 41(4) doi:10.1007/s10916-017-0698-3

Niu, Z., Zheng, M., Zhang, Y., & Wang, T. (2020). A new asymmetrical encryption algorithm based on semitensor compressed sensing in WBANs. IEEE Internet of Things Journal, 7(1), 734-750. doi:10.1109/JIOT.2019.2953519

Oktavia, N. Y., Wibawa, A. D., Pane, E. S., & Purnomo, M. H. (2019). Human emotion classification based on EEG signals using naïve bayes method. Paper presented at the Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, iSemantic 2019, 319-324. doi:10.1109/ISEMANTIC.2019.8884224 Retrieved from www.scopus.com

Pandey, A., Singh, B., Saini, B. S., & Sood, N. (2019). A novel fused coupled chaotic map based confidential data embedding-then-encryption of electrocardiogram signal. Biocybernetics and Biomedical Engineering, 39(2), 282-300. doi:10.1016/j.bbe.2018.11.012

Prasana, V. P., & Murugeswari, G. (2017). Medical signal steganography using curvelet transform. Int.J.Adv.Res.Comput.Sci., 8(3) Retrieved from www.scopus.com

Rajesh, S., Paul, V., Menon, V. G., Jacob, S., & Vinod, P. (2020). Secure brain-to-brain communication with edge computing for assisting post-stroke paralyzed patients. IEEE Internet of Things Journal, 7(4), 2531-2538. doi:10.1109/JIOT.2019.2951405

Serhani, M. A., Menshawy, M. E., Benharref, A., Harous, S., & Navaz, A. N. (2017). New algorithms for processing time-series big EEG data within mobile health monitoring systems. Computer Methods and Programs in Biomedicine, 149, 79-94. doi:10.1016/j.cmpb.2017.07.007

Shaw, L., Routray, A., & Sanchay, S. (2017). A robust motifs based artifacts removal technique from EEG. Biomedical Physics and Engineering Express, 3(3) doi:10.1088/2057-1976/aa6db8

Sheela, S. J., Suresh, K. V., & Tandur, D. (2019). Secured transmission of clinical signals using hyperchaotic DNA confusion and diffusion transform. International Journal of Digital Crime and Forensics, 11(3), 43-64. doi:10.4018/IJDCF.2019070103

Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A. K., Yang, P., Huang, H., & Hou, G. (2018). Secure and robust fragile watermarking scheme for medical images. IEEE Access, 6, 10269-10278. doi:10.1109/ACCESS.2018.2799240

Shinde, A. N., Lalbalwar, S. L., & Nandgaonkar, A. B. (2019). Modified meta-heuristic-oriented compressed sensing reconstruction algorithm for bio-signals. International Journal of Wavelets, Multiresolution and Information Processing, 17(5) doi:10.1142/S0219691319500310

Tan, R., Chiu, S. -., Nguyen, H. H., Yau, D. K. Y., & Jung, D. (2017). A joint data compression and encryption approach for wireless energy auditing networks. ACM Transactions on Sensor Networks, 13(2) doi:10.1145/3027489

Umale, C., Vaidya, A., Shirude, S., & Raut, A. (2016). Feature extraction techniques and classification algorithms for EEG signals to detect human stress-a review. International Journal of Computer Applications Technology and Research, 5(1), 08-14. Retrieved from www.scopus.com

Vidya, M. J., & Padmaja, K. V. (2019). Appending photoplethysmograph as a security key for encryption of medical images using watermarking doi:10.1007/978-981-13-1708-8_33 Retrieved from www.scopus.com

Xiong, H., Tao, J., & Yuan, C. (2017). Enabling telecare medical information systems with strong authentication and anonymity. IEEE Access, 5, 5648-5661. doi:10.1109/ACCESS.2017.2678104

Yang, W., Wang, S., Hu, J., Zheng, G., Chaudhry, J., Adi, E., & Valli, C. (2018). Securing mobile healthcare data: A smart card based cancelable finger-vein bio-cryptosystem. IEEE Access, 6, 36939-36947. doi:10.1109/ACCESS.2018.2844182

Zheng, W. -., Zhu, J. -., & Lu, B. -. (2019). Identifying stable patterns over time for emotion recognition from eeg. IEEE Transactions on Affective Computing, 10(3), 417-429. doi:10.1109/TAFFC.2017.2712143

Zhou, Y., & Zeng, F. (2017). 2D compressive sensing and multi-feature fusion for effective 3D shape retrieval. Information Sciences, 409-410, 101-120. doi:10.1016/j.ins.2017.05.009


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.