UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Rotenone is a hydrophobic organic compound with the excellent insecticidal property. However, its hydrophobicity and the short period of efficacy due to rapid degradation in the presence of UV light and air have limited its application as an insecticide. This study studied the effects of hydrophobic alkyl groups on encapsulation and controlled release of rotenone by amphiphilic chitosan derivatives namely, octyl glycol chitosan (OGC) and lauryl glycol chitosan (LGC) were assessed. The physical and chemical properties of OGC and LGC were characterized using Fourier Transform Infrared (FTIR) Spectrometer, CHNO Elemental Analyzer, UV-Visible Spectrophotometer, Fluorescence Spectrofluorometer, and Differential Scanning Calorimetry (DSC). The efficiency of OGC and LGC to encapsulate for rotenone in its micelles was determined by using a High-Performance Liquid Chromatography (HPLC). FTIR and CHNO elemental analyses confirmed the amphiphilic chitosan derivatives were successfully synthesized using the reverse micelles method. The finding from the solubility study shows that the addition of the glycol group to the chitosan backbone has enhanced chitosan's solubility properties in neutral and basic media. OGC and LGC exhibited good affinity towards rotenone with an encapsulation efficiency of more than 90%. The in vitro release study showed that the OGC and LGC could control the release of rotenone from its micelles. This study demonstrates that OGC and LGC showed beneficial properties to be further developed as a potential carrier in the pesticide formulation. ? 2021 Author(s). |
References |
Adak, T., Kumar, J., Shakil, N. A., & Walia, S. (2012). Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 47(3), 217-225. doi:10.1080/03601234.2012.634365 Aljafree, N. F. A., & Kamari, A. (2018). Synthesis, characterisation and potential application of deoxycholic acid carboxymethyl chitosan as a carrier agent for rotenone. Journal of Polymer Research, 25(6) doi:10.1007/s10965-018-1530-6 Almeida, A., Araújo, M., Novoa-Carballal, R., Andrade, F., Gonçalves, H., Reis, R. L., . . . Sarmento, B. (2020). Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Materials Science and Engineering C, 112 doi:10.1016/j.msec.2020.110920 Ashitha, A., & Mathew, J. (2020). Characteristics and types of slow/controlled release of pesticides. Controlled Release of Pesticides for Sustainable Agriculture, , 141-153. Retrieved from www.scopus.com Cho, I. S., Park, C. G., Huh, B. K., Cho, M. O., Khatun, Z., Li, Z., . . . Huh, K. M. (2016). Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy. Acta Biomaterialia, 39, 124-132. doi:10.1016/j.actbio.2016.05.011 Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. doi:10.1016/S0928-0987(01)00095-1 de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances, 32(8), 1550-1561. doi:10.1016/j.biotechadv.2014.10.010 Fei, X., Yu, M., Zhang, B., Cao, L., Yu, L., Jia, G., & Zhou, J. (2016). The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 152, 343-351. doi:10.1016/j.saa.2015.07.068 Feng, B., Ashraf, M. A., & Peng, L. (2016). Characterization of particle shape, zeta potential, loading efficiency and outdoor stability for chitosan-ricinoleic acid loaded with rotenone. Open Life Sciences, 11(1), 380-386. doi:10.1515/biol-2016-0050 Galán-Jiménez, M. C., Mishael, Y. -., Nir, S., Morillo, E., & Undabeytia, T. (2013). Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A methodological approach. PLoS ONE, 8(3) doi:10.1371/journal.pone.0059060 Gao, F. -., Zhang, H. -., Liu, L. -., Wang, Y. -., Jiang, Q., Yang, X. -., & Zhang, Q. -. (2008). Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydrate Polymers, 71(4), 606-613. doi:10.1016/j.carbpol.2007.07.008 Hazra, D. K. (2015). Recent advancement in pesticide formulations for user and environment friendly pest management. Int.J.Res.Rev., 2(2), 35-40. Retrieved from www.scopus.com Hu, F. -., Ren, G. -., Yuan, H., Du, Y. -., & Zeng, S. (2006). Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids and Surfaces B: Biointerfaces, 50(2), 97-103. doi:10.1016/j.colsurfb.2006.04.009 Huo, M., Zhang, Y., Zhou, J., Zou, A., Yu, D., Wu, Y., . . . Li, H. (2010). Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. International Journal of Pharmaceutics, 394(1-2), 162-173. doi:10.1016/j.ijpharm.2010.05.001 Hussein, M. Z., Nazarudin, N. F., Sarijo, S. H., & Yarmo, M. A. (2012). J.Nanomater, 2012, 1-10. Retrieved from www.scopus.com Ihegwuagu, N. E., Sha'Ato, R., Tor-Anyiin, T. A., Nnamonu, L. A., Buekes, P., Sone, B., & Maaza, M. (2016). Facile formulation of starch-silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New Journal of Chemistry, 40(2), 1777-1784. doi:10.1039/c5nj01831e Jiang, G. -., Quan, D., Liao, K., & Wang, H. (2006). Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydrate Polymers, 66(4), 514-520. doi:10.1016/j.carbpol.2006.04.008 Kamari, A., & Yusoff, S. N. M. (2019). N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations. Open Chemistry, 17(1), 365-380. doi:10.1515/chem-2019-0043 Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25-35. doi:10.1016/0378-5173(83)90064-9 Kubota, N., Tatsumoto, N., Sano, T., & Toya, K. (2000). A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydrate Research, 324(4), 268-274. doi:10.1016/S0008-6215(99)00263-3 Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K. -. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, 131-153. doi:10.1016/j.jconrel.2018.12.012 Kuskov, A. N., Kulikov, P. P., Goryachaya, A. V., Tzatzarakis, M. N., Tsatsakis, A. M., Velonia, K., & Shtilman, M. I. (2018). Self-assembled amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: Stability aspects. Journal of Applied Polymer Science, 135(1) doi:10.1002/app.45637 Lao, S. -., Zhang, Z. -., Xu, H. -., & Jiang, G. -. (2010). Novel amphiphilic chitosan derivatives: Synthesis, characterization and micellar solubilization of rotenone. Carbohydrate Polymers, 82(4), 1136-1142. doi:10.1016/j.carbpol.2010.06.044 Larsson, M., Huang, W. -., Hsiao, M. -., Wang, Y. -., Nydén, M., Chiou, S. -., & Liu, D. -. (2013). Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Progress in Polymer Science, 38(9), 1307-1328. doi:10.1016/j.progpolymsci.2013.06.009 Liu, G., Lin, G., Tan, M., Zhou, H., Chen, H., Xu, H., & Zhou, X. (2019). Hydrazone-linked soybean protein isolate-carboxymethyl cellulose conjugates for pH-responsive controlled release of pesticides. Polymer Journal, 51(11), 1211-1222. doi:10.1038/s41428-019-0235-y Liu, Q., Li, Y., Yang, X., Xing, S., Qiao, C., Wang, S., . . . Li, T. (2020). O-carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application. Carbohydrate Polymers, 237 doi:10.1016/j.carbpol.2020.116112 Mobarak, N. N., & Abdullah, M. P. (2010). Synthesis and characterization of several lauryl chitosan derivatives. Mal.J.Analy.Sci, 14(2), 82-99. Retrieved from www.scopus.com Motiei, M., Kashanian, S., Lucia, L. A., & Khazaei, M. (2017). Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. Journal of Controlled Release, 260, 213-225. doi:10.1016/j.jconrel.2017.06.010 Mourya, V. K., Inamdar, N. N., & Tiwari, A. (2010). Carboxymethyl chitosan and its applications. Advanced Materials Letters, 1(1), 11-33. doi:10.5185/amlett.2010.3108 Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science (Oxford), 34(7), 641-678. doi:10.1016/j.progpolymsci.2009.04.001 Rahman, A., & Brown, C. W. (1983). Effect of pH on the critical micelle concentration of sodium dodecyl sulphate. Journal of Applied Polymer Science, 28(4), 1331-1334. doi:10.1002/app.1983.070280407 Rekha, M. R., & Sharma, C. P. (2009). Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Journal of Controlled Release, 135(2), 144-151. doi:10.1016/j.jconrel.2009.01.011 Singh, A., Dhiman, N., Kar, A. K., Singh, D., Purohit, M. P., Ghosh, D., & Patnaik, S. (2020). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials, 385 doi:10.1016/j.jhazmat.2019.121525 Smith, J. G. (2008). Organic Chemistry 2 Edition, Retrieved from www.scopus.com Sukamporn, P., Baek, S. J., Gritsanapan, W., Chirachanchai, S., Nualsanit, T., & Rojanapanthu, P. (2017). Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study. Materials Science and Engineering C, 77, 1068-1077. doi:10.1016/j.msec.2017.03.263 Wu, Y., Li, M., & Gao, H. (2009). Polymeric micelle composed of PLA and chitosan as a drug carrier. Journal of Polymer Research, 16(1), 11-18. doi:10.1007/s10965-008-9197-z Yusoff, S. N. M., & Kamari, A. (2018). N-deoxycholic acid-O-glycol chitosan as a potential carrier agent for botanical pesticide rotenone. Journal of Applied Polymer Science, 135(47) doi:10.1002/app.46855 Zhang, C., Qineng, P., & Zhang, H. (2004). Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B: Biointerfaces, 39(1-2), 69-75. doi:10.1016/j.colsurfb.2004.09.002 Zhang, X. -., Shi, N. -., Zhao, Y., Zhu, H. -., Guan, J., & Jin, Y. (2015). Deoxycholic acid-grafted PEGylated chitosan micelles for the delivery of mitomycin C. Drug Development and Industrial Pharmacy, 41(6), 916-926. doi:10.3109/03639045.2014.913613 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |