UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science
ISBN :9780735441163
ISSN :0094243X
Main Author :Azlan Kamari
Additional Authors :Siti Najiah Mohd Yusoff
Susana, Wong Siew Tin
Title :Alkyl glycol chitosan derivatives for encapsulation and controlled release of rotenone
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :AIP Conference Proceedings
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Rotenone is a hydrophobic organic compound with the excellent insecticidal property. However, its hydrophobicity and the short period of efficacy due to rapid degradation in the presence of UV light and air have limited its application as an insecticide. This study studied the effects of hydrophobic alkyl groups on encapsulation and controlled release of rotenone by amphiphilic chitosan derivatives namely, octyl glycol chitosan (OGC) and lauryl glycol chitosan (LGC) were assessed. The physical and chemical properties of OGC and LGC were characterized using Fourier Transform Infrared (FTIR) Spectrometer, CHNO Elemental Analyzer, UV-Visible Spectrophotometer, Fluorescence Spectrofluorometer, and Differential Scanning Calorimetry (DSC). The efficiency of OGC and LGC to encapsulate for rotenone in its micelles was determined by using a High-Performance Liquid Chromatography (HPLC). FTIR and CHNO elemental analyses confirmed the amphiphilic chitosan derivatives were successfully synthesized using the reverse micelles method. The finding from the solubility study shows that the addition of the glycol group to the chitosan backbone has enhanced chitosan's solubility properties in neutral and basic media. OGC and LGC exhibited good affinity towards rotenone with an encapsulation efficiency of more than 90%. The in vitro release study showed that the OGC and LGC could control the release of rotenone from its micelles. This study demonstrates that OGC and LGC showed beneficial properties to be further developed as a potential carrier in the pesticide formulation. ? 2021 Author(s).

References

Adak, T., Kumar, J., Shakil, N. A., & Walia, S. (2012). Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 47(3), 217-225. doi:10.1080/03601234.2012.634365

Aljafree, N. F. A., & Kamari, A. (2018). Synthesis, characterisation and potential application of deoxycholic acid carboxymethyl chitosan as a carrier agent for rotenone. Journal of Polymer Research, 25(6) doi:10.1007/s10965-018-1530-6

Almeida, A., Araújo, M., Novoa-Carballal, R., Andrade, F., Gonçalves, H., Reis, R. L., . . . Sarmento, B. (2020). Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Materials Science and Engineering C, 112 doi:10.1016/j.msec.2020.110920

Ashitha, A., & Mathew, J. (2020). Characteristics and types of slow/controlled release of pesticides. Controlled Release of Pesticides for Sustainable Agriculture, , 141-153. Retrieved from www.scopus.com

Cho, I. S., Park, C. G., Huh, B. K., Cho, M. O., Khatun, Z., Li, Z., . . . Huh, K. M. (2016). Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy. Acta Biomaterialia, 39, 124-132. doi:10.1016/j.actbio.2016.05.011

Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. doi:10.1016/S0928-0987(01)00095-1

de Oliveira, J. L., Campos, E. V. R., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnology Advances, 32(8), 1550-1561. doi:10.1016/j.biotechadv.2014.10.010

Fei, X., Yu, M., Zhang, B., Cao, L., Yu, L., Jia, G., & Zhou, J. (2016). The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 152, 343-351. doi:10.1016/j.saa.2015.07.068

Feng, B., Ashraf, M. A., & Peng, L. (2016). Characterization of particle shape, zeta potential, loading efficiency and outdoor stability for chitosan-ricinoleic acid loaded with rotenone. Open Life Sciences, 11(1), 380-386. doi:10.1515/biol-2016-0050

Galán-Jiménez, M. C., Mishael, Y. -., Nir, S., Morillo, E., & Undabeytia, T. (2013). Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A methodological approach. PLoS ONE, 8(3) doi:10.1371/journal.pone.0059060

Gao, F. -., Zhang, H. -., Liu, L. -., Wang, Y. -., Jiang, Q., Yang, X. -., & Zhang, Q. -. (2008). Preparation and physicochemical characteristics of self-assembled nanoparticles of deoxycholic acid modified-carboxymethyl curdlan conjugates. Carbohydrate Polymers, 71(4), 606-613. doi:10.1016/j.carbpol.2007.07.008

Hazra, D. K. (2015). Recent advancement in pesticide formulations for user and environment friendly pest management. Int.J.Res.Rev., 2(2), 35-40. Retrieved from www.scopus.com

Hu, F. -., Ren, G. -., Yuan, H., Du, Y. -., & Zeng, S. (2006). Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids and Surfaces B: Biointerfaces, 50(2), 97-103. doi:10.1016/j.colsurfb.2006.04.009

Huo, M., Zhang, Y., Zhou, J., Zou, A., Yu, D., Wu, Y., . . . Li, H. (2010). Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. International Journal of Pharmaceutics, 394(1-2), 162-173. doi:10.1016/j.ijpharm.2010.05.001

Hussein, M. Z., Nazarudin, N. F., Sarijo, S. H., & Yarmo, M. A. (2012). J.Nanomater, 2012, 1-10. Retrieved from www.scopus.com

Ihegwuagu, N. E., Sha'Ato, R., Tor-Anyiin, T. A., Nnamonu, L. A., Buekes, P., Sone, B., & Maaza, M. (2016). Facile formulation of starch-silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New Journal of Chemistry, 40(2), 1777-1784. doi:10.1039/c5nj01831e

Jiang, G. -., Quan, D., Liao, K., & Wang, H. (2006). Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydrate Polymers, 66(4), 514-520. doi:10.1016/j.carbpol.2006.04.008

Kamari, A., & Yusoff, S. N. M. (2019). N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations. Open Chemistry, 17(1), 365-380. doi:10.1515/chem-2019-0043

Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25-35. doi:10.1016/0378-5173(83)90064-9

Kubota, N., Tatsumoto, N., Sano, T., & Toya, K. (2000). A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydrate Research, 324(4), 268-274. doi:10.1016/S0008-6215(99)00263-3

Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K. -. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, 131-153. doi:10.1016/j.jconrel.2018.12.012

Kuskov, A. N., Kulikov, P. P., Goryachaya, A. V., Tzatzarakis, M. N., Tsatsakis, A. M., Velonia, K., & Shtilman, M. I. (2018). Self-assembled amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: Stability aspects. Journal of Applied Polymer Science, 135(1) doi:10.1002/app.45637

Lao, S. -., Zhang, Z. -., Xu, H. -., & Jiang, G. -. (2010). Novel amphiphilic chitosan derivatives: Synthesis, characterization and micellar solubilization of rotenone. Carbohydrate Polymers, 82(4), 1136-1142. doi:10.1016/j.carbpol.2010.06.044

Larsson, M., Huang, W. -., Hsiao, M. -., Wang, Y. -., Nydén, M., Chiou, S. -., & Liu, D. -. (2013). Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Progress in Polymer Science, 38(9), 1307-1328. doi:10.1016/j.progpolymsci.2013.06.009

Liu, G., Lin, G., Tan, M., Zhou, H., Chen, H., Xu, H., & Zhou, X. (2019). Hydrazone-linked soybean protein isolate-carboxymethyl cellulose conjugates for pH-responsive controlled release of pesticides. Polymer Journal, 51(11), 1211-1222. doi:10.1038/s41428-019-0235-y

Liu, Q., Li, Y., Yang, X., Xing, S., Qiao, C., Wang, S., . . . Li, T. (2020). O-carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application. Carbohydrate Polymers, 237 doi:10.1016/j.carbpol.2020.116112

Mobarak, N. N., & Abdullah, M. P. (2010). Synthesis and characterization of several lauryl chitosan derivatives. Mal.J.Analy.Sci, 14(2), 82-99. Retrieved from www.scopus.com

Motiei, M., Kashanian, S., Lucia, L. A., & Khazaei, M. (2017). Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. Journal of Controlled Release, 260, 213-225. doi:10.1016/j.jconrel.2017.06.010

Mourya, V. K., Inamdar, N. N., & Tiwari, A. (2010). Carboxymethyl chitosan and its applications. Advanced Materials Letters, 1(1), 11-33. doi:10.5185/amlett.2010.3108

Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science (Oxford), 34(7), 641-678. doi:10.1016/j.progpolymsci.2009.04.001

Rahman, A., & Brown, C. W. (1983). Effect of pH on the critical micelle concentration of sodium dodecyl sulphate. Journal of Applied Polymer Science, 28(4), 1331-1334. doi:10.1002/app.1983.070280407

Rekha, M. R., & Sharma, C. P. (2009). Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Journal of Controlled Release, 135(2), 144-151. doi:10.1016/j.jconrel.2009.01.011

Singh, A., Dhiman, N., Kar, A. K., Singh, D., Purohit, M. P., Ghosh, D., & Patnaik, S. (2020). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials, 385 doi:10.1016/j.jhazmat.2019.121525

Smith, J. G. (2008). Organic Chemistry 2 Edition, Retrieved from www.scopus.com

Sukamporn, P., Baek, S. J., Gritsanapan, W., Chirachanchai, S., Nualsanit, T., & Rojanapanthu, P. (2017). Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study. Materials Science and Engineering C, 77, 1068-1077. doi:10.1016/j.msec.2017.03.263

Wu, Y., Li, M., & Gao, H. (2009). Polymeric micelle composed of PLA and chitosan as a drug carrier. Journal of Polymer Research, 16(1), 11-18. doi:10.1007/s10965-008-9197-z

Yusoff, S. N. M., & Kamari, A. (2018). N-deoxycholic acid-O-glycol chitosan as a potential carrier agent for botanical pesticide rotenone. Journal of Applied Polymer Science, 135(47) doi:10.1002/app.46855

Zhang, C., Qineng, P., & Zhang, H. (2004). Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B: Biointerfaces, 39(1-2), 69-75. doi:10.1016/j.colsurfb.2004.09.002

Zhang, X. -., Shi, N. -., Zhao, Y., Zhu, H. -., Guan, J., & Jin, Y. (2015). Deoxycholic acid-grafted PEGylated chitosan micelles for the delivery of mitomycin C. Drug Development and Industrial Pharmacy, 41(6), 916-926. doi:10.3109/03639045.2014.913613


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.