UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :T Technology
ISSN :00401625
Main Author :Mujahid Ghouri, Arsalan
Title :An empirical study of real-time information-receiving using industry 4.0 technologies in downstream operations
Place of Production :Tanjung Malim
Publisher :Fakulti Pengurusan dan Ekonomi
Year of Publication :2021
Notes :Technological Forecasting and Social Change
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Industry 4.0 requires firms to adopt the latest technology to be more effective. However, previous studies have not addressed customer engagement (CE) and its direct benefit (buying) and indirect benefits (referring, influencing, and feedback) using modern technologies such as industry 4.0. The present study analyses customer engagement in regard to real-time information receiving (RTIR) in the downstream operations implemented through software-as-a-service technology. The data is collected from 533 customers of small businesses in retail, food & beverages, and accommodation sectors. The study's empirical model is validated using the theory of information sharing (ToIS). The outcomes specify that RTIR is the antecedent of CE. The results show the mediation effect of customer orientation on RTIR and CE relationship. The study also confirms that gender moderates three out of the four examined relationships between RTIR and CE. Subsequently, our outcomes offer a deeper understanding of RTIR and CE, imbedded in ToIS. This article exposes industry practitioners to RTIR and CE in terms of direct benefit and indirect benefits with modern technologies in downstream operations. This study provides a new theoretical framework using ToIS to advance RTIR in downstream operations through SaaS and CE. ? 2020

References

Aceto, G., Persico, V., & Pescapé, A. (2020). Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. Journal of Industrial Information Integration, 18 doi:10.1016/j.jii.2020.100129

Appio, F. P., Lima, M., & Paroutis, S. (2019). Understanding smart cities: Innovation ecosystems, technological advancements, and societal challenges. Technological Forecasting and Social Change, 142, 1-14. doi:10.1016/j.techfore.2018.12.018

Ari Samadhi, T. M. A., & Hoang, K. (1995). Shared computer-integrated manufacturing for various types of production environment. International Journal of Operations and Production Management, 15(5), 95-108. doi:10.1108/01443579510083695

Armstrong, J. S., & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(AUGUST), 396-402. Retrieved from www.scopus.com

Aydiner, A. S., Tatoglu, E., Bayraktar, E., Zaim, S., & Delen, D. (2019). Business analytics and firm performance: The mediating role of business process performance. Journal of Business Research, 96, 228-237. doi:10.1016/j.jbusres.2018.11.028

Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 36(3), 421-458. Retrieved from www.scopus.com

Beckers, S. F. M., Doorn, J. V., & Verhoef, P. C. (2017). Good, better, engaged? the effect of company-initiated customer engagement behavior on shareholder value. Journal of the Academy of Marketing Science, 46(3), 366-383. doi:10.1007/s11747-017-0539-4

Beinke, T., Quandt, M., Ait-Alla, A., & Freitag, M. (2020). The impact of information sharing on installation processes of offshore wind farms – process modelling and simulation-based analysis. International Journal of Shipping and Transport Logistics, 12(1-2), 92-116. doi:10.1504/IJSTL.2020.105872

Benlian, A., & Hess, T. (2011). Opportunities and risks of software-as-a-service: Findings from a survey of IT executives. Decision Support Systems, 52(1), 232-246. doi:10.1016/j.dss.2011.07.007

Bhagwat, R., & Sharma, M. K. (2007). Performance measurement of supply chain management: A balanced scorecard approach. Computers and Industrial Engineering, 53(1), 43-62. doi:10.1016/j.cie.2007.04.001

Brodie, R. J., Hollebeek, L. D., Jurić, B., & Ilić, A. (2011). Customer engagement: Conceptual domain, fundamental propositions, and implications for research. Journal of Service Research, 14(3), 252-271. doi:10.1177/1094670511411703

Büyüközkan, G., & Göçer, F. (2018). Digital supply chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157-177. doi:10.1016/j.compind.2018.02.010

Cai, Z., Huang, Q., Liu, H., & Liang, L. (2016). The moderating role of information technology capability in the relationship between supply chain collaboration and organizational responsiveness: Evidence from china. International Journal of Operations and Production Management, 36(10), 1247-1271. doi:10.1108/IJOPM-08-2014-0406

Capon, N., & Burke, M. (1980). Individual, product class, and task-related factors in consumer information processing. Journal of Consumer Research, 7(3), 314-326. Retrieved from www.scopus.com

Chennamaneni, A., Teng, J. T. C., & Raja, M. K. (2012). A unified model of knowledge sharing behaviours: Theoretical development and empirical test. Behaviour and Information Technology, 31(11), 1097-1115. doi:10.1080/0144929X.2011.624637

Christofides, E., Muise, A., & Desmarais, S. (2012). Risky disclosures on facebook: The effect of having a bad experience on online behavior. Journal of Adolescent Research, 27(6), 714-731. doi:10.1177/0743558411432635

Chu, S. -., & Kim, Y. (2011). Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. International Journal of Advertising, 30(1), 47-75. doi:10.2501/IJA-30-1-047-075

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. doi:10.1037/0033-2909.112.1.155

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple Regression/Correlation analysis for the behavioral sciences, third edition. Applied multiple Regression/Correlation analysis for the behavioral sciences, third edition (pp. 1-704) doi:10.4324/9780203774441 Retrieved from www.scopus.com

Constant, D., Kiesler, S., & Sproull, L. (1994). What's mine is ours, or is it? A study of attitudes about information sharing. Information Systems Research, 5(4), 400-421. doi:10.1287/isre.5.4.400

Craighead, C. W., Blackhurst, J., Rungtusanatham, M. J., & Handfield, R. B. (2007). The severity of supply chain disruptions: Design characteristics and mitigation capabilities. Decision Sciences, 38(1), 131-156. doi:10.1111/j.1540-5915.2007.00151.x

Cruz-Cárdenas, J., Zabelina, E., Deyneka, O., Guadalupe-Lanas, J., & Velín-Fárez, M. (2019). Role of demographic factors, attitudes toward technology, and cultural values in the prediction of technology-based consumer behaviors: A study in developing and emerging countries. Technological Forecasting and Social Change, 149 doi:10.1016/j.techfore.2019.119768

Davila, A., Gupta, M., & Palmer, R. J. (2003). Moving procurement systems to the internet: The adoption and use of e-procurement technology models. European Management Journal, 21(1), 11-23. doi:10.1016/S0263-2373(02)00155-X

Deshpande, R., Farley, J. U., & Webster, F. E. (1993). Corporate culture, customer orientation, and innovativeness in japanese firms: A quadrad analysis. Journal of Marketing, 57(JANUARY), 23-37. Retrieved from www.scopus.com

Devaraj, S., Krajewski, L., & Wei, J. C. (2007). Impact of eBusiness technologies on operational performance: The role of production information integration in the supply chain. Journal of Operations Management, 25(6), 1199-1216. doi:10.1016/j.jom.2007.01.002

Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics and Data Analysis, 81, 10-23. doi:10.1016/j.csda.2014.07.008

Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers' product evaluations. Journal of Marketing Research, 28(AUGUST), 307-319. Retrieved from www.scopus.com

Dziekan, K., & Kottenhoff, K. (2007). Dynamic at-stop real-time information displays for public transport: Effects on customers. Transportation Research Part A: Policy and Practice, 41(6), 489-501. doi:10.1016/j.tra.2006.11.006

Eagly, A. H., & Wood, W. (1991). Explaining sex differences in social behavior: A meta-analytic perspective. Personality and Social Psychology Bulletin, 17(3), 306-315. Retrieved from www.scopus.com

Esbenshade, J., Vidal, M., Fascilla, G., & Ono, M. (2016). Customer-driven management models for choiceless clientele? business process reengineering in a california welfare agency. Work, Employment & Society, 30(1), 77-96. doi:10.1177/0950017015604109

Fawcett, S. E., Osterhaus, P., Magnan, G. M., Brau, J. C., & McCarter, M. W. (2007). Information sharing and supply chain performance: The role of connectivity and willingness. Supply Chain Management, 12(5), 358-368. doi:10.1108/13598540710776935

Feller, J., Gleasure, R., & Treacy, S. (2017). Information sharing and user behavior in internet-enabled peer-to-peer lending systems: An empirical study. Journal of Information Technology, 32(2), 127-146. doi:10.1057/jit.2016.1

Forslund, H. (2007). The impact of performance management on customers' expected logistics performance. International Journal of Operations and Production Management, 27(8), 901-918. doi:10.1108/01443570710763822

Frank, A. G., Mendes, G. H. S., Ayala, N. F., & Ghezzi, A. (2019). Servitization and industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technological Forecasting and Social Change, 141, 341-351. doi:10.1016/j.techfore.2019.01.014

Frazzon, E. M., Albrecht, A., Pires, M., Israel, E., Kück, M., & Freitag, M. (2018). Hybrid approach for the integrated scheduling of production and transport processes along supply chains. International Journal of Production Research, 56(5), 2019-2035. doi:10.1080/00207543.2017.1355118

Gefen, D., Straub, D., & Boudreau, M. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(7), 1-78. Retrieved from www.scopus.com

Gewald, H., & Dibbern, J. (2009). Risks and benefits of business process outsourcing: A study of transaction services in the german banking industry. Information and Management, 46(4), 249-257. doi:10.1016/j.im.2009.03.002

Ghouri, A. M., & Mani, V. (2019). Role of real-time information-sharing through SaaS: An industry 4.0 perspective. International Journal of Information Management, 49, 301-315. doi:10.1016/j.ijinfomgt.2019.05.026

González-Valiente, C. L., Costas, R., Noyons, E., Steinerová, J., & Šušol, J. (2020). Terminological (di) similarities between information management and knowledge management: A term co-occurrence analysis. Mob.Netw.Appl., , 1-11. Retrieved from www.scopus.com

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate Data Analysis, Retrieved from www.scopus.com

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Retrieved from www.scopus.com

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12. doi:10.1016/j.lrp.2013.01.001

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. doi:10.1108/EBR-11-2018-0203

Handfield, R. B., Cousins, P. D., Lawson, B., & Petersen, K. J. (2015). How can supply management really improve performance? A knowledge-based model of alignment capabilities. Journal of Supply Chain Management, 51(3), 3-17. doi:10.1111/jscm.12066

Happell, B., Gaskin, C. J., & Platania-Phung, C. (2015). The construct validity of the work-related flow inventory in a sample of australian workers. Journal of Psychology: Interdisciplinary and Applied, 149(1), 42-62. doi:10.1080/00223980.2013.838539

Harmeling, C. M., Moffett, J. W., Arnold, M. J., & Carlson, B. D. (2017). Toward a theory of customer engagement marketing. Journal of the Academy of Marketing Science, 45(3), 312-335. doi:10.1007/s11747-016-0509-2

Hartline, M. D., Maxham III, J. G., & McKee, D. O. (2000). Corridors of influence in the dissemination of customer-oriented strategy to customer contact service employees. Journal of Marketing, 64(2), 35-50. doi:10.1509/jmkg.64.2.35.18001

Hayes, J. L., King, K. W., & Ramirez, A., Jr. (2016). Brands, friends, & viral advertising: A social exchange perspective on the ad referral processes. Journal of Interactive Marketing, 36, 31-45. doi:10.1016/j.intmar.2016.04.001

Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., . . . Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on rönkkö and evermann (2013). Organizational Research Methods, 17(2), 182-209. doi:10.1177/1094428114526928

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management and Data Systems, 116(1), 2-20. doi:10.1108/IMDS-09-2015-0382

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. doi:10.1007/s11747-014-0403-8

Henseler, J. A. (0000). Retrieved from www.scopus.com

Hitt, L. M., & Brynjolfsson, E. (1996). Productivity, business profitability, and consumer surplus: Three different measures of information technology value. MIS Quarterly: Management Information Systems, 20(2), 121-142. doi:10.2307/249475

Ho, M. H. -., Chung, H. F. L., Kingshott, R., & Chiu, C. -. (2020). Customer engagement, consumption and firm performance in a multi-actor service eco-system: The moderating role of resource integration. Journal of Business Research, 121, 557-566. doi:10.1016/j.jbusres.2020.02.008

Hollebeek, L. D., Srivastava, R. K., & Chen, T. (2018). Correction to: SD logic–informed customer engagement: Integrative framework, revised fundamental propositions, and application to CRM. J.Acad.Mark.Sci., Retrieved from www.scopus.com

Hosmer, D. W., Jr., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression: Third edition. Applied logistic regression: Third edition (pp. 1-510) doi:10.1002/9781118548387 Retrieved from www.scopus.com

Hulme, M. R. (1997). Procurement reform and MIS project success. International Journal of Purchasing and Materials Management, 33(1), 2-7. Retrieved from www.scopus.com

Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829-846. doi:10.1080/00207543.2018.1488086

Jääskeläinen, A. (2021). The relational outcomes of performance management in buyer-supplier relationships. International Journal of Production Economics, 232 doi:10.1016/j.ijpe.2020.107933

Jarvenpaa, S. L., & Staples, D. S. (2001). Exploring perceptions of organizational ownership of information and expertise. Journal of Management Information Systems, 18(1), 151-183. doi:10.1080/07421222.2001.11045673

Jarvenpaa, S. L., & Staples, D. S. (2000). The use of collaborative electronic media for information sharing: An exploratory study of determinants. Journal of Strategic Information Systems, 9(2-3), 129-154. doi:10.1016/s0963-8687(00)00042-1

Johnson, J. T., Barksdale Jr., H. C., & Boles, J. S. (2003). Factors associated with customer willingness to refer leads to salespeople. Journal of Business Research, 56(4), 257-263. doi:10.1016/S0148-2963(02)00436-8

Kim, D. -., Lehto, X. Y., & Morrison, A. M. (2007). Gender differences in online travel information search: Implications for marketing communications on the internet. Tourism Management, 28(2), 423-433. doi:10.1016/j.tourman.2006.04.001

Knemeyer, A. M., Corsi, T. M., & Murphy, P. R. (2003). LOGISTICS OUTSOURCING RELATIONSHIPS: CUSTOMER PERSPECTIVES. Journal of Business Logistics, 24(1), 77-109. doi:10.1002/j.2158-1592.2003.tb00033.x

Kohli, A. K., & Jaworski, B. J. (1990). Market orientation: The construct, research propositions, and managerial implications. Journal of Marketing, 54(APRIL), 1-18. Retrieved from www.scopus.com

Kumar, V. (2013). Profitable customer engagement: Concept, metrics, and strategies. Profitable Customer Engagement: Concept, Metrics and Strategies, Retrieved from www.scopus.com

Kumar, V., Aksoy, L., Donkers, B., Venkatesan, R., Wiesel, T., & Tillmanns, S. (2010). Undervalued or overvalued customers: Capturing total customer engagement value. Journal of Service Research, 13(3), 297-310. doi:10.1177/1094670510375602

Kumar, V., Petersen, J. A., & Leone, R. P. (2010). Driving profitability by encouraging customer referrals: Who, when, and how. Journal of Marketing, 74(5), 1-17. doi:10.1509/jmkg.74.5.1

Lambert, D. M., & Cooper, M. C. (2000). Issues in supply chain management. Industrial Marketing Management, 29(1), 65-83. doi:10.1016/S0019-8501(99)00113-3

Lasi, H., Fettke, P., Kemper, H. -., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business and Information Systems Engineering, 6(4), 239-242. doi:10.1007/s12599-014-0334-4

Li, S., & Lin, B. (2006). Accessing information sharing and information quality in supply chain management. Decision Support Systems, 42(3), 1641-1656. doi:10.1016/j.dss.2006.02.011

Li, Y., Ye, F., & Sheu, C. (2014). Social capital, information sharing and performance evidence from china. International Journal of Operations and Production Management, 34(11), 1440-1462. doi:10.1108/IJOPM-03-2013-0132

Lin, X., Featherman, M., & Sarker, S. (2017). Understanding factors affecting users’ social networking site continuance: A gender difference perspective. Information and Management, 54(3), 383-395. doi:10.1016/j.im.2016.09.004

Lindell, M. K., & Whitney, D. J. (2001). Accounting for common method variance in cross-sectional research designs. Journal of Applied Psychology, 86(1), 114-121. doi:10.1037/0021-9010.86.1.114

Liu, L., Cheung, C. M. K., & Lee, M. K. O. (2016). An empirical investigation of information sharing behavior on social commerce sites. International Journal of Information Management, 36(5), 686-699. doi:10.1016/j.ijinfomgt.2016.03.013

Locke, E. A. (2009). Handbook of Principles of Organizational Behavior: Indispensable Knowledge for Evidence-Based Management, Retrieved from www.scopus.com

Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123-146. doi:10.1109/TPC.2014.2312452

Maiga, A. S., Nilsson, A., & Ax, C. (2015). Relationships between internal and external information systems integration, cost and quality performance, and firm profitability. International Journal of Production Economics, 169, 422-434. doi:10.1016/j.ijpe.2015.08.030

Manavalan, E., & Jayakrishna, K. (2019). A review of internet of things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Computers and Industrial Engineering, 127, 925-953. doi:10.1016/j.cie.2018.11.030


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.