UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :R Medicine
ISSN :07533322
Main Author :Mokrish Ajat
Additional Authors :Mohd. Faiz Idris
Title :An insight on the future therapeutic application potential of Stevia rebaudiana Bertoni for atherosclerosis and cardiovascular diseases
Place of Production :Tanjung Malim
Publisher :Pusat Bahasa Dan Pengajian Umum
Year of Publication :2021
Notes :Biomedicine and Pharmacotherapy
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease. ? 2021

References

Abdolmaleki, F., Gheibi Hayat, S. M., Bianconi, V., Johnston, T. P., & Sahebkar, A. (2019). Atherosclerosis and immunity: A perspective. Trends in Cardiovascular Medicine, 29(6), 363-371. doi:10.1016/j.tcm.2018.09.017

Adebayo, O., & Adeoye, A. M. (2020). Atherosclerosis: A journey around the terminology. Intechopen, , 1-15. Retrieved from www.scopus.com

Ajat, M., Molenaar, M., Brouwers, J. F. H. M., Vaandrager, A. B., Houweling, M., & Helms, J. B. (2017). Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(2), 176-187. doi:10.1016/j.bbalip.2016.10.013

Ayyappan, J. P., Paul, A., & Goo, Y. -. (2016). Lipid droplet-associated proteins in atherosclerosis (review). Molecular Medicine Reports, 13(6), 4527-4534. doi:10.3892/mmr.2016.5099

Barbosa, A. D., & Siniossoglou, S. (2017). Function of lipid droplet-organelle interactions in lipid homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 1864(9), 1459-1468. doi:10.1016/j.bbamcr.2017.04.001

Chapman, K. D., Aziz, M., Dyer, J. M., & Mullen, R. T. (2019). Mechanisms of lipid droplet biogenesis. Biochemical Journal, 476(13), 1929-1942. doi:10.1042/BCJ20180021

Chen, X., & Goodman, J. M. (2017). The collaborative work of droplet assembly. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(10), 1205-1211. doi:10.1016/j.bbalip.2017.07.003

Choudhary, V., Ojha, N., Golden, A., & Prinz, W. A. (2015). A conserved family of proteins facilitates nascent lipid droplet budding from the ER. Journal of Cell Biology, 211(2), 261-271. doi:10.1083/jcb.201505067

Deng, W., Tang, T., Hou, Y., Zeng, Q., Wang, Y., Fan, W., & Qu, S. (2019). Extracellular vesicles in atherosclerosis. Clinica Chimica Acta, 495, 109-117. doi:10.1016/j.cca.2019.04.051

Ding, Y., Yang, L., Zhang, S., Wang, Y., Du, Y., Pu, J., . . . Liu, P. (2012). Identification of the major functional proteins of prokaryotic lipid droplets. Journal of Lipid Research, 53(3), 399-411. doi:10.1194/jlr.M021899

Falk, E. (2006). Pathogenesis of atherosclerosis. Journal of the American College of Cardiology, 47(8 SUPPL.), C7-C12. doi:10.1016/j.jacc.2005.09.068

Fam, T. K., Klymchenko, A. S., & Collot, M. (2018). Recent advances in fluorescent probes for lipid droplets. Materials, 11(9) doi:10.3390/ma11091768

Fazio, S., Major, A. S., Swift, L. L., Gleaves, L. A., Accad, M., Linton, M. F., & Farese Jr., R. V. (2001). Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. Journal of Clinical Investigation, 107(2), 163-171. doi:10.1172/JCI10310

Frostegård, J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC Medicine, 11(1) doi:10.1186/1741-7015-11-117

Fruchart, J. C., Nierman, M. C., Stroes, E. S. G., Kastelein, J. J. P., & Duriez, P. (2004). New Risk Factors for Atherosclerosis and Patient Risk Assessment Circulation, 109 Retrieved from www.scopus.com

Fujimoto, T., & Parton, R. G. (2011). Not just fat: The structure and function of the lipid droplet. Cold Spring Harbor Perspectives in Biology, 3(3), 1-17. doi:10.1101/cshperspect.a004838

Gao, M., Huang, X., Song, B. -., & Yang, H. (2019). The biogenesis of lipid droplets: Lipids take center stage. Progress in Lipid Research, 75 doi:10.1016/j.plipres.2019.100989

Gao, Q., Binns, D. D., Kinch, L. N., Grishin, N. V., Ortiz, N., Chen, X., & Goodman, J. M. (2017). Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. Journal of Cell Biology, 216(10), 3199-3217. doi:10.1083/jcb.201610013

Ghosh, S., Zhao, B., Bie, J., & Song, J. (2010). Macrophage cholesteryl ester mobilization and atherosclerosis. Vascular Pharmacology, 52(1-2), 1-10. doi:10.1016/j.vph.2009.10.002

Gil-Pulido, J., & Zernecke, A. (2017). Antigen-presenting dendritic cells in atherosclerosis. European Journal of Pharmacology, 816, 25-31. doi:10.1016/j.ejphar.2017.08.016

Gimbrone Jr., M. A., Topper, J. N., Nagel, T., Anderson, K. R., & Garcia-Cardeña, G. (2000). Endothelial dysfunction, hemodynamic forces, and atherogenesis doi:10.1111/j.1749-6632.2000.tb06318.x Retrieved from www.scopus.com

Glass, C. K., & Witztum, J. L. (2001). Atherosclerosis: The road ahead. Cell, 104(4), 503-516. doi:10.1016/S0092-8674(01)00238-0

Gross, D. A., & Silver, D. L. (2014). Cytosolic lipid droplets: From mechanisms of fat storage to disease. Critical Reviews in Biochemistry and Molecular Biology, 49(4), 304-326. doi:10.3109/10409238.2014.931337

Gross, D. A., Zhan, C., & Silver, D. L. (2011). Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19581-19586. doi:10.1073/pnas.1110817108

Hansson, G. K., Robertson, A. -. L., & Söderberg-Nauclér, C. (2006). Inflammation and atherosclerosis doi:10.1146/annurev.pathol.1.110304.100100 Retrieved from www.scopus.com

Hashemi, H. F., & Goodman, J. M. (2015). The life cycle of lipid droplets. Current Opinion in Cell Biology, 33, 119-124. doi:10.1016/j.ceb.2015.02.002

Hashimoto, S., & Fogelman, A. M. (1980). Smooth microsomes. a trap for cholesteryl ester formed in hepatic microsomes. Journal of Biological Chemistry, 255(18), 8678-8684. Retrieved from www.scopus.com

Hauck, A. K., & Bernlohr, D. A. (2016). Thematic review series: Lipotoxicity: Many roads to cell dysfunction and cell death: Oxidative stress and lipotoxicity. Journal of Lipid Research, 57(11), 1976-1986. doi:10.1194/jlr.R066597

Henne, W. M., Reese, M. L., & Goodman, J. M. (2018). The assembly of lipid droplets and their roles in challenged cells. EMBO Journal, 37(12) doi:10.15252/embj.201898947

Ilias, A. N., Hamzah, H., Ismail, I. S., & Ajat, M. (2020). Stevia: Limiting cholesterol synthesis in hep-G2 cells. Asia-Pacific Journal of Molecular Biology and Biotechnology, 28(1), 110-119. Retrieved from www.scopus.com

Insull Jr., W. (2009). The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. American Journal of Medicine, 122(1 SUPPL.), S3-S14. doi:10.1016/j.amjmed.2008.10.013

Jin, Y., Tan, Y., Chen, L., Liu, Y., & Ren, Z. (2018). Reactive oxygen species induces lipid droplet accumulation in hepg2 cells by increasing perilipin 2 expression. International Journal of Molecular Sciences, 19(11) doi:10.3390/ijms19113445

Kernohan, E. A., & Lepherd, E. E. (1969). Size distribution of fat globules in cow's milk during milking, measured with a coulter counter. Journal of Dairy Research, 36(2), 177-182. doi:10.1017/S002202990001267X

Kimmel, A. R., & Sztalryd, C. (2014). Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization. Current Opinion in Lipidology, 25(2), 110-117. doi:10.1097/MOL.0000000000000057

Konstantinov, I. E., Jankovic, G. M., Alexander, & Ignatowski, I. (2013). A pioneer in the study of atherosclerosis. Tex.Hear.Inst.J., 40, 247-249. Retrieved from www.scopus.com

Konstantinov, I. E., Mejevoi, N., & Anichkov, N. M. (2006). Nikolai N. anichkov and his theory of atherosclerosis. Texas Heart Institute Journal, 33(4), 417-423. Retrieved from www.scopus.com

Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233-241. doi:10.1038/35025203

Martin, S., & Parton, R. G. (2005). Caveolin, cholesterol, and lipid bodies. Seminars in Cell and Developmental Biology, 16(2), 163-174. doi:10.1016/j.semcdb.2005.01.007

Meyers, A., Weiskittel, T. M., & Dalhaimer, P. (2017). Lipid droplets: Formation to breakdown. Lipids, 52(6), 465-475. doi:10.1007/s11745-017-4263-0

Mills, G. L., Coley, S. C., & Williams, J. F. (1983). Chemical composition of lipid droplets isolated from larvae of taenia taeniaeformis. The Journal of Parasitology, 69(5), 850-856. doi:10.2307/3281044

Moriya, J. (2019). Critical roles of inflammation in atherosclerosis. Journal of Cardiology, 73(1), 22-27. doi:10.1016/j.jjcc.2018.05.010

Mota, R., Homeister, J. W., Willis, M. S., & Bahnson, E. M. (2017). Atherosclerosis: Pathogenesis, genetics and experimental models. Encyclopedia of Life Sciences, , 1-10. Retrieved from www.scopus.com

Murphy, D. J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progress in Lipid Research, 40(5), 325-438. doi:10.1016/S0163-7827(01)00013-3

Murphy, D. J. (2012). The dynamic roles of intracellular lipid droplets: From archaea to mammals. Protoplasma, 249(3), 541-585. doi:10.1007/s00709-011-0329-7

Nettebrock, N. T., & Bohnert, M. (2020). Born this way – biogenesis of lipid droplets from specialized ER subdomains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1865(1) doi:10.1016/j.bbalip.2019.04.008

Olzmann, J. A., & Carvalho, P. (2019). Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 20(3), 137-155. doi:10.1038/s41580-018-0085-z

Onal, G., Kutlu, O., Gozuacik, D., & Dokmeci Emre, S. (2017). Lipid droplets in health and disease. Lipids in Health and Disease, 16(1) doi:10.1186/s12944-017-0521-7

O'Sullivan, S. (2007). Statins: A review of benefits and risks. TSMJ, 8, 52-56. Retrieved from www.scopus.com

Pavlova, T., Spacil, Z., Vidova, V., Zlamal, F., Cechova, E., Hodicka, Z., & Bienertova-Vasku, J. (2020). Adipophilin and perilipin 3 positively correlate with total lipid content in human breast milk. Scientific Reports, 10(1) doi:10.1038/s41598-019-57241-w

Raggi, P., Genest, J., Giles, J. T., Rayner, K. J., Dwivedi, G., Beanlands, R. S., & Gupta, M. (2018). Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis, 276, 98-108. doi:10.1016/j.atherosclerosis.2018.07.014

Reue, K. (2011). A thematic review series: Lipid droplet storage and metabolism: From yeast to man. Journal of Lipid Research, 52(11), 1865-1868. doi:10.1194/jlr.E020602

Rios, F. J. O., Gidlund, M., & Jancar, S. (2011). Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages. Cellular Physiology and Biochemistry, 27(3-4), 363-372. doi:10.1159/000327962

Roberts, M. A., & Olzmann, J. A. (2020). Protein quality control and lipid droplet metabolism doi:10.1146/annurev-cellbio-031320-101827 Retrieved from www.scopus.com

Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 362(6423), 801-809. doi:10.1038/362801a0

Ross, R., Glomset, J., & Harker, L. (1977). Response to injury and atherogenesis. American Journal of Pathology, 86(3), 675-684. Retrieved from www.scopus.com

Sears, A. E., & Palczewski, K. (2016). Lecithin:Retinol acyltransferase: A key enzyme involved in the retinoid (visual) cycle. Biochemistry, 55(22), 3082-3091. doi:10.1021/acs.biochem.6b00319

Seidman, M. A., Mitchell, R. N., & Stone, J. R. (2014). Pathophysiology of atherosclerosis. Cellular and molecular pathobiology of cardiovascular disease (pp. 221-237) doi:10.1016/B978-0-12-405206-2.00012-0 Retrieved from www.scopus.com

Shah, P. K. (2019). Inflammation, infection and atherosclerosis. Trends in Cardiovascular Medicine, 29(8), 468-472. doi:10.1016/j.tcm.2019.01.004

Shen, W. -., Azhar, S., & Kraemer, F. B. (2016). Lipid droplets and steroidogenic cells. Experimental Cell Research, 340(2), 209-214. doi:10.1016/j.yexcr.2015.11.024

Soltero-Pérez, I. (2002). Toward a new definition of atherosclerosis including hypertension: A proposal. Journal of Human Hypertension, 16, S23-S25. doi:10.1038/sj.jhh.1001336

Soulages, J. L., Firdaus, S. J., Hartson, S., Chen, X., Howard, A. D., & Arrese, E. L. (2012). Developmental changes in the protein composition of manduca sexta lipid droplets. Insect Biochemistry and Molecular Biology, 42(5), 305-320. doi:10.1016/j.ibmb.2012.01.001

Sturley, S. L., & Hussain, M. M. (2012). Thematic review series: Lipid droplet synthesis and metabolism: From yeast to man - lipid droplet formation on opposing sides of the endoplasmic reticulum. Journal of Lipid Research, 53(9), 1800-1810. doi:10.1194/jlr.R028290

Suzuki, M., Shinohara, Y., Ohsaki, Y., & Fujimoto, T. (2011). Lipid droplets: Size matters. Journal of Electron Microscopy, 60(SUPPL. 1), S101-S116. doi:10.1093/jmicro/dfr016

Testerink, N., Ajat, M., Houweling, M., Brouwers, J. F., Pully, V. V., van Manen, H. -., . . . Vaandrager, A. B. (2012). Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS ONE, 7(4) doi:10.1371/journal.pone.0034945

Thiam, A. R., Farese Jr., R. V., & Walther, T. C. (2013). The biophysics and cell biology of lipid droplets. Nature Reviews Molecular Cell Biology, 14(12), 775-786. doi:10.1038/nrm3699

Thiele, C., & Spandl, J. (2008). Cell biology of lipid droplets. Current Opinion in Cell Biology, 20(4), 378-385. doi:10.1016/j.ceb.2008.05.009

Walther, T. C., Chung, J., & Farese, R. V., Jr. (2017). Lipid droplet biogenesis doi:10.1146/annurev-cellbio-100616-060608 Retrieved from www.scopus.com

Wang, E., Zhao, E., Hong, Y., Lam, J. W. Y., & Tang, B. Z. (2014). A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. Journal of Materials Chemistry B, 2(14), 2013-2019. doi:10.1039/c3tb21675

Wang, T., & Butany, J. (2017). Pathogenesis of atherosclerosis. Diagnostic Histopathology, 23(11), 473-478. doi:10.1016/j.mpdhp.2017.11.009

Welte, M. A. (2015). Expanding roles for lipid droplets. Current Biology, 25(11), R470-R481. doi:10.1016/j.cub.2015.04.004

Welte, M. A., & Gould, A. P. (2017). Lipid droplet functions beyond energy storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(10), 1260-1272. doi:10.1016/j.bbalip.2017.07.006

Wilfling, F., Haas, J. T., Walther, T. C., & Jr, R. V. F. (2014). Lipid droplet biogenesis. Current Opinion in Cell Biology, 29(1), 39-45. doi:10.1016/j.ceb.2014.03.008

Williams, K. J., & Tabas, I. (1995). The response-to-retention hypothesis of early atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 15(5), 551-562. doi:10.1161/01.atv.15.5.551

Winkel, L. C., Hoogendoorn, A., Xing, R., Wentzel, J. J., & Van der Heiden, K. (2015). Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis, 241(1), 100-110. doi:10.1016/j.atherosclerosis.2015.04.796

Xu, S., Zhang, X., & Liu, P. (2018). Lipid droplet proteins and metabolic diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1864(5), 1968-1983. doi:10.1016/j.bbadis.2017.07.019

Yamashita, A., Hayashi, Y., Nemoto-Sasaki, Y., Ito, M., Oka, S., Tanikawa, T., . . . Sugiura, T. (2014). Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Progress in Lipid Research, 53(1), 18-81. doi:10.1016/j.plipres.2013.10.001

Yang, H., Galea, A., Sytnyk, V., & Crossley, M. (2012). Controlling the size of lipid droplets: Lipid and protein factors. Current Opinion in Cell Biology, 24(4), 509-516. doi:10.1016/j.ceb.2012.05.012

Zehmer, J. K., Huang, Y., Peng, G., Pu, J., Anderson, R. G. W., & Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics, 9(4), 914-921. doi:10.1002/pmic.200800584

Zhu, Y., Chen, C. -., Li, J., Cheng, J. -., Jang, M., & Kim, K. -. (2018). In vitro exploration of ACAT contributions to lipid droplet formation during adipogenesis. Journal of Lipid Research, 59(5), 820-829. doi:10.1194/jlr.M081745

Zweytick, D., Athenstaedt, K., & Daum, G. (2000). Intracellular lipid particles of eukaryotic cells. Biochimica Et Biophysica Acta - Reviews on Biomembranes, 1469(2), 101-120. doi:10.1016/S0005-2736(00)00294-7


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.