UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease. ? 2021 |
References |
Abdolmaleki, F., Gheibi Hayat, S. M., Bianconi, V., Johnston, T. P., & Sahebkar, A. (2019). Atherosclerosis and immunity: A perspective. Trends in Cardiovascular Medicine, 29(6), 363-371. doi:10.1016/j.tcm.2018.09.017 Adebayo, O., & Adeoye, A. M. (2020). Atherosclerosis: A journey around the terminology. Intechopen, , 1-15. Retrieved from www.scopus.com Ajat, M., Molenaar, M., Brouwers, J. F. H. M., Vaandrager, A. B., Houweling, M., & Helms, J. B. (2017). Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(2), 176-187. doi:10.1016/j.bbalip.2016.10.013 Ayyappan, J. P., Paul, A., & Goo, Y. -. (2016). Lipid droplet-associated proteins in atherosclerosis (review). Molecular Medicine Reports, 13(6), 4527-4534. doi:10.3892/mmr.2016.5099 Barbosa, A. D., & Siniossoglou, S. (2017). Function of lipid droplet-organelle interactions in lipid homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 1864(9), 1459-1468. doi:10.1016/j.bbamcr.2017.04.001 Chapman, K. D., Aziz, M., Dyer, J. M., & Mullen, R. T. (2019). Mechanisms of lipid droplet biogenesis. Biochemical Journal, 476(13), 1929-1942. doi:10.1042/BCJ20180021 Chen, X., & Goodman, J. M. (2017). The collaborative work of droplet assembly. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(10), 1205-1211. doi:10.1016/j.bbalip.2017.07.003 Choudhary, V., Ojha, N., Golden, A., & Prinz, W. A. (2015). A conserved family of proteins facilitates nascent lipid droplet budding from the ER. Journal of Cell Biology, 211(2), 261-271. doi:10.1083/jcb.201505067 Deng, W., Tang, T., Hou, Y., Zeng, Q., Wang, Y., Fan, W., & Qu, S. (2019). Extracellular vesicles in atherosclerosis. Clinica Chimica Acta, 495, 109-117. doi:10.1016/j.cca.2019.04.051 Ding, Y., Yang, L., Zhang, S., Wang, Y., Du, Y., Pu, J., . . . Liu, P. (2012). Identification of the major functional proteins of prokaryotic lipid droplets. Journal of Lipid Research, 53(3), 399-411. doi:10.1194/jlr.M021899 Falk, E. (2006). Pathogenesis of atherosclerosis. Journal of the American College of Cardiology, 47(8 SUPPL.), C7-C12. doi:10.1016/j.jacc.2005.09.068 Fam, T. K., Klymchenko, A. S., & Collot, M. (2018). Recent advances in fluorescent probes for lipid droplets. Materials, 11(9) doi:10.3390/ma11091768 Fazio, S., Major, A. S., Swift, L. L., Gleaves, L. A., Accad, M., Linton, M. F., & Farese Jr., R. V. (2001). Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. Journal of Clinical Investigation, 107(2), 163-171. doi:10.1172/JCI10310 Frostegård, J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC Medicine, 11(1) doi:10.1186/1741-7015-11-117 Fruchart, J. C., Nierman, M. C., Stroes, E. S. G., Kastelein, J. J. P., & Duriez, P. (2004). New Risk Factors for Atherosclerosis and Patient Risk Assessment Circulation, 109 Retrieved from www.scopus.com Fujimoto, T., & Parton, R. G. (2011). Not just fat: The structure and function of the lipid droplet. Cold Spring Harbor Perspectives in Biology, 3(3), 1-17. doi:10.1101/cshperspect.a004838 Gao, M., Huang, X., Song, B. -., & Yang, H. (2019). The biogenesis of lipid droplets: Lipids take center stage. Progress in Lipid Research, 75 doi:10.1016/j.plipres.2019.100989 Gao, Q., Binns, D. D., Kinch, L. N., Grishin, N. V., Ortiz, N., Chen, X., & Goodman, J. M. (2017). Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. Journal of Cell Biology, 216(10), 3199-3217. doi:10.1083/jcb.201610013 Ghosh, S., Zhao, B., Bie, J., & Song, J. (2010). Macrophage cholesteryl ester mobilization and atherosclerosis. Vascular Pharmacology, 52(1-2), 1-10. doi:10.1016/j.vph.2009.10.002 Gil-Pulido, J., & Zernecke, A. (2017). Antigen-presenting dendritic cells in atherosclerosis. European Journal of Pharmacology, 816, 25-31. doi:10.1016/j.ejphar.2017.08.016 Gimbrone Jr., M. A., Topper, J. N., Nagel, T., Anderson, K. R., & Garcia-Cardeña, G. (2000). Endothelial dysfunction, hemodynamic forces, and atherogenesis doi:10.1111/j.1749-6632.2000.tb06318.x Retrieved from www.scopus.com Glass, C. K., & Witztum, J. L. (2001). Atherosclerosis: The road ahead. Cell, 104(4), 503-516. doi:10.1016/S0092-8674(01)00238-0 Gross, D. A., & Silver, D. L. (2014). Cytosolic lipid droplets: From mechanisms of fat storage to disease. Critical Reviews in Biochemistry and Molecular Biology, 49(4), 304-326. doi:10.3109/10409238.2014.931337 Gross, D. A., Zhan, C., & Silver, D. L. (2011). Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19581-19586. doi:10.1073/pnas.1110817108 Hansson, G. K., Robertson, A. -. L., & Söderberg-Nauclér, C. (2006). Inflammation and atherosclerosis doi:10.1146/annurev.pathol.1.110304.100100 Retrieved from www.scopus.com Hashemi, H. F., & Goodman, J. M. (2015). The life cycle of lipid droplets. Current Opinion in Cell Biology, 33, 119-124. doi:10.1016/j.ceb.2015.02.002 Hashimoto, S., & Fogelman, A. M. (1980). Smooth microsomes. a trap for cholesteryl ester formed in hepatic microsomes. Journal of Biological Chemistry, 255(18), 8678-8684. Retrieved from www.scopus.com Hauck, A. K., & Bernlohr, D. A. (2016). Thematic review series: Lipotoxicity: Many roads to cell dysfunction and cell death: Oxidative stress and lipotoxicity. Journal of Lipid Research, 57(11), 1976-1986. doi:10.1194/jlr.R066597 Henne, W. M., Reese, M. L., & Goodman, J. M. (2018). The assembly of lipid droplets and their roles in challenged cells. EMBO Journal, 37(12) doi:10.15252/embj.201898947 Ilias, A. N., Hamzah, H., Ismail, I. S., & Ajat, M. (2020). Stevia: Limiting cholesterol synthesis in hep-G2 cells. Asia-Pacific Journal of Molecular Biology and Biotechnology, 28(1), 110-119. Retrieved from www.scopus.com Insull Jr., W. (2009). The pathology of atherosclerosis: Plaque development and plaque responses to medical treatment. American Journal of Medicine, 122(1 SUPPL.), S3-S14. doi:10.1016/j.amjmed.2008.10.013 Jin, Y., Tan, Y., Chen, L., Liu, Y., & Ren, Z. (2018). Reactive oxygen species induces lipid droplet accumulation in hepg2 cells by increasing perilipin 2 expression. International Journal of Molecular Sciences, 19(11) doi:10.3390/ijms19113445 Kernohan, E. A., & Lepherd, E. E. (1969). Size distribution of fat globules in cow's milk during milking, measured with a coulter counter. Journal of Dairy Research, 36(2), 177-182. doi:10.1017/S002202990001267X Kimmel, A. R., & Sztalryd, C. (2014). Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization. Current Opinion in Lipidology, 25(2), 110-117. doi:10.1097/MOL.0000000000000057 Konstantinov, I. E., Jankovic, G. M., Alexander, & Ignatowski, I. (2013). A pioneer in the study of atherosclerosis. Tex.Hear.Inst.J., 40, 247-249. Retrieved from www.scopus.com Konstantinov, I. E., Mejevoi, N., & Anichkov, N. M. (2006). Nikolai N. anichkov and his theory of atherosclerosis. Texas Heart Institute Journal, 33(4), 417-423. Retrieved from www.scopus.com Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233-241. doi:10.1038/35025203 Martin, S., & Parton, R. G. (2005). Caveolin, cholesterol, and lipid bodies. Seminars in Cell and Developmental Biology, 16(2), 163-174. doi:10.1016/j.semcdb.2005.01.007 Meyers, A., Weiskittel, T. M., & Dalhaimer, P. (2017). Lipid droplets: Formation to breakdown. Lipids, 52(6), 465-475. doi:10.1007/s11745-017-4263-0 Mills, G. L., Coley, S. C., & Williams, J. F. (1983). Chemical composition of lipid droplets isolated from larvae of taenia taeniaeformis. The Journal of Parasitology, 69(5), 850-856. doi:10.2307/3281044 Moriya, J. (2019). Critical roles of inflammation in atherosclerosis. Journal of Cardiology, 73(1), 22-27. doi:10.1016/j.jjcc.2018.05.010 Mota, R., Homeister, J. W., Willis, M. S., & Bahnson, E. M. (2017). Atherosclerosis: Pathogenesis, genetics and experimental models. Encyclopedia of Life Sciences, , 1-10. Retrieved from www.scopus.com Murphy, D. J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progress in Lipid Research, 40(5), 325-438. doi:10.1016/S0163-7827(01)00013-3 Murphy, D. J. (2012). The dynamic roles of intracellular lipid droplets: From archaea to mammals. Protoplasma, 249(3), 541-585. doi:10.1007/s00709-011-0329-7 Nettebrock, N. T., & Bohnert, M. (2020). Born this way – biogenesis of lipid droplets from specialized ER subdomains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1865(1) doi:10.1016/j.bbalip.2019.04.008 Olzmann, J. A., & Carvalho, P. (2019). Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 20(3), 137-155. doi:10.1038/s41580-018-0085-z Onal, G., Kutlu, O., Gozuacik, D., & Dokmeci Emre, S. (2017). Lipid droplets in health and disease. Lipids in Health and Disease, 16(1) doi:10.1186/s12944-017-0521-7 O'Sullivan, S. (2007). Statins: A review of benefits and risks. TSMJ, 8, 52-56. Retrieved from www.scopus.com Pavlova, T., Spacil, Z., Vidova, V., Zlamal, F., Cechova, E., Hodicka, Z., & Bienertova-Vasku, J. (2020). Adipophilin and perilipin 3 positively correlate with total lipid content in human breast milk. Scientific Reports, 10(1) doi:10.1038/s41598-019-57241-w Raggi, P., Genest, J., Giles, J. T., Rayner, K. J., Dwivedi, G., Beanlands, R. S., & Gupta, M. (2018). Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis, 276, 98-108. doi:10.1016/j.atherosclerosis.2018.07.014 Reue, K. (2011). A thematic review series: Lipid droplet storage and metabolism: From yeast to man. Journal of Lipid Research, 52(11), 1865-1868. doi:10.1194/jlr.E020602 Rios, F. J. O., Gidlund, M., & Jancar, S. (2011). Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages. Cellular Physiology and Biochemistry, 27(3-4), 363-372. doi:10.1159/000327962 Roberts, M. A., & Olzmann, J. A. (2020). Protein quality control and lipid droplet metabolism doi:10.1146/annurev-cellbio-031320-101827 Retrieved from www.scopus.com Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature, 362(6423), 801-809. doi:10.1038/362801a0 Ross, R., Glomset, J., & Harker, L. (1977). Response to injury and atherogenesis. American Journal of Pathology, 86(3), 675-684. Retrieved from www.scopus.com Sears, A. E., & Palczewski, K. (2016). Lecithin:Retinol acyltransferase: A key enzyme involved in the retinoid (visual) cycle. Biochemistry, 55(22), 3082-3091. doi:10.1021/acs.biochem.6b00319 Seidman, M. A., Mitchell, R. N., & Stone, J. R. (2014). Pathophysiology of atherosclerosis. Cellular and molecular pathobiology of cardiovascular disease (pp. 221-237) doi:10.1016/B978-0-12-405206-2.00012-0 Retrieved from www.scopus.com Shah, P. K. (2019). Inflammation, infection and atherosclerosis. Trends in Cardiovascular Medicine, 29(8), 468-472. doi:10.1016/j.tcm.2019.01.004 Shen, W. -., Azhar, S., & Kraemer, F. B. (2016). Lipid droplets and steroidogenic cells. Experimental Cell Research, 340(2), 209-214. doi:10.1016/j.yexcr.2015.11.024 Soltero-Pérez, I. (2002). Toward a new definition of atherosclerosis including hypertension: A proposal. Journal of Human Hypertension, 16, S23-S25. doi:10.1038/sj.jhh.1001336 Soulages, J. L., Firdaus, S. J., Hartson, S., Chen, X., Howard, A. D., & Arrese, E. L. (2012). Developmental changes in the protein composition of manduca sexta lipid droplets. Insect Biochemistry and Molecular Biology, 42(5), 305-320. doi:10.1016/j.ibmb.2012.01.001 Sturley, S. L., & Hussain, M. M. (2012). Thematic review series: Lipid droplet synthesis and metabolism: From yeast to man - lipid droplet formation on opposing sides of the endoplasmic reticulum. Journal of Lipid Research, 53(9), 1800-1810. doi:10.1194/jlr.R028290 Suzuki, M., Shinohara, Y., Ohsaki, Y., & Fujimoto, T. (2011). Lipid droplets: Size matters. Journal of Electron Microscopy, 60(SUPPL. 1), S101-S116. doi:10.1093/jmicro/dfr016 Testerink, N., Ajat, M., Houweling, M., Brouwers, J. F., Pully, V. V., van Manen, H. -., . . . Vaandrager, A. B. (2012). Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS ONE, 7(4) doi:10.1371/journal.pone.0034945 Thiam, A. R., Farese Jr., R. V., & Walther, T. C. (2013). The biophysics and cell biology of lipid droplets. Nature Reviews Molecular Cell Biology, 14(12), 775-786. doi:10.1038/nrm3699 Thiele, C., & Spandl, J. (2008). Cell biology of lipid droplets. Current Opinion in Cell Biology, 20(4), 378-385. doi:10.1016/j.ceb.2008.05.009 Walther, T. C., Chung, J., & Farese, R. V., Jr. (2017). Lipid droplet biogenesis doi:10.1146/annurev-cellbio-100616-060608 Retrieved from www.scopus.com Wang, E., Zhao, E., Hong, Y., Lam, J. W. Y., & Tang, B. Z. (2014). A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. Journal of Materials Chemistry B, 2(14), 2013-2019. doi:10.1039/c3tb21675 Wang, T., & Butany, J. (2017). Pathogenesis of atherosclerosis. Diagnostic Histopathology, 23(11), 473-478. doi:10.1016/j.mpdhp.2017.11.009 Welte, M. A. (2015). Expanding roles for lipid droplets. Current Biology, 25(11), R470-R481. doi:10.1016/j.cub.2015.04.004 Welte, M. A., & Gould, A. P. (2017). Lipid droplet functions beyond energy storage. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1862(10), 1260-1272. doi:10.1016/j.bbalip.2017.07.006 Wilfling, F., Haas, J. T., Walther, T. C., & Jr, R. V. F. (2014). Lipid droplet biogenesis. Current Opinion in Cell Biology, 29(1), 39-45. doi:10.1016/j.ceb.2014.03.008 Williams, K. J., & Tabas, I. (1995). The response-to-retention hypothesis of early atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 15(5), 551-562. doi:10.1161/01.atv.15.5.551 Winkel, L. C., Hoogendoorn, A., Xing, R., Wentzel, J. J., & Van der Heiden, K. (2015). Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis, 241(1), 100-110. doi:10.1016/j.atherosclerosis.2015.04.796 Xu, S., Zhang, X., & Liu, P. (2018). Lipid droplet proteins and metabolic diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1864(5), 1968-1983. doi:10.1016/j.bbadis.2017.07.019 Yamashita, A., Hayashi, Y., Nemoto-Sasaki, Y., Ito, M., Oka, S., Tanikawa, T., . . . Sugiura, T. (2014). Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Progress in Lipid Research, 53(1), 18-81. doi:10.1016/j.plipres.2013.10.001 Yang, H., Galea, A., Sytnyk, V., & Crossley, M. (2012). Controlling the size of lipid droplets: Lipid and protein factors. Current Opinion in Cell Biology, 24(4), 509-516. doi:10.1016/j.ceb.2012.05.012 Zehmer, J. K., Huang, Y., Peng, G., Pu, J., Anderson, R. G. W., & Liu, P. (2009). A role for lipid droplets in inter-membrane lipid traffic. Proteomics, 9(4), 914-921. doi:10.1002/pmic.200800584 Zhu, Y., Chen, C. -., Li, J., Cheng, J. -., Jang, M., & Kim, K. -. (2018). In vitro exploration of ACAT contributions to lipid droplet formation during adipogenesis. Journal of Lipid Research, 59(5), 820-829. doi:10.1194/jlr.M081745 Zweytick, D., Athenstaedt, K., & Daum, G. (2000). Intracellular lipid particles of eukaryotic cells. Biochimica Et Biophysica Acta - Reviews on Biomembranes, 1469(2), 101-120. doi:10.1016/S0005-2736(00)00294-7 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |