UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In the present study, poly(?-caprolactrone) nanocapsules were loaded with betel essential oil and used as anti-mosquito spray formulations for cotton and polyester fabrics for the first time. The release and retention of betel essential oil on the fabrics after sequential washing and heating were determined using UV-Visible spectrophotometry. The repellent activity of cotton and polyester fabrics was evaluated using an Excito chamber test on Aedes aegypti mosquitoes. The nanocapsules exhibited high betel essential oil encapsulation efficiency (98.70%) and remained stable throughout 60 days of colloidal system stability study. The encapsulation of betel essential oil in the lipid core of polymer nanocapsules was able to increase the durability towards washing and heating, as the fabrics still exhibited a good repellency of up to 47% against mosquitoes even after 5 sequential washing cycles. Results obtained from this study highlight the feasibility of betel essential oil-loaded lipid-core nanocapsules as alternatives to mosquito repellent spray formulations in the production of insect protective fabrics. ? 2021 The Textile Institute. |
References |
Alkenani, N. A. (2017). Influence of the mixtures composed of slow–release insecticide formulations against aedes aegypti mosquito larvae reared in pond water. Saudi Journal of Biological Sciences, 24(6), 1181-1185. doi:10.1016/j.sjbs.2017.02.006 Al-Mekhlafi, F. A. (2018). Larvicidal, ovicidal activities and histopathological alterations induced by carum copticum (apiaceae) extract against culex pipiens (diptera: Culicidae). Saudi Journal of Biological Sciences, 25(1), 52-56. doi:10.1016/j.sjbs.2017.02.010 Balaji, A. P. B., Ashu, A., Manigandan, S., Sastry, T. P., Mukherjee, A., & Chandrasekaran, N. (2017). Polymeric nanoencapsulation of insect repellent: Evaluation of its bioefficacy on culex quinquefasciatus mosquito population and effective impregnation onto cotton fabrics for insect repellent clothing polymeric nanoencapsulation of insect repellent. Journal of King Saud University - Science, 29(4), 517-527. doi:10.1016/j.jksus.2016.12.005 Basak, S. (2018). The use of fuzzy logic to determine the concentration of betel leaf essential oil and its potency as a juice preservative. Food Chemistry, 240, 1113-1120. doi:10.1016/j.foodchem.2017.08.047 Benkaddour, A., Jradi, K., Robert, S., & Daneault, C. (2013). Grafting of polycaprolactone on oxidized nanocelluloses by click chemistry. Nanomaterials, 3(1), 141-157. doi:10.3390/nano3010141 Cé, R., Pacheco, B. Z., Ciocheta, T. M., Barbosa, F. S., Alves, A. D. C. S., Dallemole, D. R., . . . Pohlmann, A. R. (2021). Antibacterial activity against gram-positive bacteria using fusidic acid-loaded lipid-core nanocapsules. Reactive and Functional Polymers, 162 doi:10.1016/j.reactfunctpolym.2021.104876 Chattopadhyay, P., Dhiman, S., Borah, S., Rabha, B., Chaurasia, A. K., & Veer, V. (2015). Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes. Acta Tropica, 147, 45-53. doi:10.1016/j.actatropica.2015.03.027 Ciera, L., Beladjal, L., Van Landuyt, L., Menger, D., Holdinga, M., Mertens, J., . . . Gheysens, T. (2019). Electrospinning repellents in polyvinyl alcohol-nanofibres for obtaining mosquito-repelling fabrics. Royal Society Open Science, 6(8) doi:10.1098/rsos.182139 De Sousa Lobato, K. B., Paese, K., Forgearini, J. C., Guterres, S. S., Jablonski, A., & De Oliveira Rios, A. (2013). Characterisation and stability evaluation of bixin nanocapsules. Food Chemistry, 141(4), 3906-3912. doi:10.1016/j.foodchem.2013.04.135 Drewes, C. C., Fiel, L. A., Bexiga, C. G., Asbahr, A. C. C., Uchiyama, M. K., Cogliati, B., . . . Farsky, S. P. (2016). Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models. International Journal of Nanomedicine, 11, 1261-1279. doi:10.2147/IJN.S101543 Fiel, L. A., Adorne, M. D., Guterres, S. S., Netz, P. A., & Pohlmann, A. R. (2013). Variable temperature multiple light scattering analysis to determine the enthalpic term of a reversible agglomeration in submicrometric colloidal formulations: A quick quantitative comparison of the relative physical stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 93-104. doi:10.1016/j.colsurfa.2013.04.015 Forgearini, J. C., Michalowski, C. B., Assumpção, E., Pohlmann, A. R., & Guterres, S. S. (2016). Development of an insect repellent spray for textile based on permethrin-loaded lipid-core nanocapsules. Journal of Nanoscience and Nanotechnology, 16(2), 1301-1309. doi:10.1166/jnn.2016.11665 Grillo, R., dos Santos, N. Z. P., Maruyama, C. R., Rosa, A. H., de Lima, R., & Fraceto, L. F. (2012). Poly(e{open}-caprolactone)nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials, 231-232, 1-9. doi:10.1016/j.jhazmat.2012.06.019 Gurlek, A. C., Sevinc, B., Bayrak, E., & Erisken, C. (2017). Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration. Materials Science and Engineering C, 71, 820-826. doi:10.1016/j.msec.2016.10.071 Hebeish, A., Hamdy, I. A., El-Sawy, S. M., & Abdel-Mohdy, F. A. (2010). Preparation of durable insect repellent cotton fabric through treatment with a finishing formulation containing cypermethrin. Journal of the Textile Institute, 101(7), 627-634. doi:10.1080/00405000902732859 Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems - A review (part 2). Tropical Journal of Pharmaceutical Research, 12(2), 265-273. doi:10.4314/tjpr.v12i2.20 Joseph, E., & Singhvi, G. (2019). Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. Nanomaterials for drug delivery and therapy (pp. 91-116) doi:10.1016/B978-0-12-816505-8.00007-2 Retrieved from www.scopus.com Junkum, A., Maleewong, W., Saeung, A., Champakaew, D., Chansang, A., Amornlerdpison, D., . . . Pitasawat, B. (2021). Ligusticum sinense nanoemulsion gel as potential repellent against aedes aegypti, anopheles minimus, and culex quinquefasciatus (diptera: Culicidae). Insects, 12(7) doi:10.3390/insects12070596 Kweon, D. -., Kawasaki, N., Nakayama, A., & Aiba, S. (2004). Preparation and characterization of starch/polycaprolactone blend. Journal of Applied Polymer Science, 92(3), 1716-1723. doi:10.1002/app.20130 Lorenzoni, R., Cordenonsi, L. M., Davies, S., Antonow, M. B., Medina Diedrich, A. S., Santos, C. G., . . . Raffin, R. P. (2019). Lipid-core nanocapsules are an alternative to the pulmonary delivery and to increase the stability of statins. Journal of Microencapsulation, 36(4), 317-326. doi:10.1080/02652048.2019.1624849 Martianasari, R., & Hamid, P. H. (2019). Larvicidal, adulticidal, and oviposition-deterrent activity of piper betle L. essential oil to aedes aegypti. Veterinary World, 12(3), 367-371. doi:10.14202/vetworld.2019.367-371 Nouri, L., Mohammadi Nafchi, A., & Karim, A. A. (2014). Phytochemical, antioxidant, antibacterial, and α-amylase inhibitory properties of different extracts from betel leaves. Industrial Crops and Products, 62, 47-52. doi:10.1016/j.indcrop.2014.08.015 Pereira, A. E. S., Grillo, R., Mello, N. F. S., Rosa, A. H., & Fraceto, L. F. (2014). Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials, 268, 207-215. doi:10.1016/j.jhazmat.2014.01.025 Pin, K. Y., Chuah, A. L., Rashih, A. A., Mazura, M. P., Fadzureena, J., Vimala, S., & Rasadah, M. A. (2010). Antioxidant and anti-inflammatory activities of extracts of betel leaves (piper betle) from solvents with different polarities. Journal of Tropical Forest Science, 22(4), 448-455. Retrieved from www.scopus.com Rigo, L. A., Frescura, V., Fiel, L., Coradini, K., Ourique, A. F., Emanuelli, T., . . . Beck, R. C. R. (2014). Influence of the type of vegetable oil on the drug release profile from lipid-core nanocapsules and in vivo genotoxicity study. Pharmaceutical Development and Technology, 19(7), 789-798. doi:10.3109/10837450.2013.829097 Samimi, S., Maghsoudnia, N., Eftekhari, R. B., & Dorkoosh, F. (2018). Lipid-based nanoparticles for drug delivery systems. Characterization and biology of nanomaterials for drug delivery: Nanoscience and nanotechnology in drug delivery (pp. 47-76) doi:10.1016/B978-0-12-814031-4.00003-9 Retrieved from www.scopus.com Schorkopf, D. L. P., Spanoudis, C. G., Mboera, L. E. G., Mafra-Neto, A., Ignell, R., & Dekker, T. (2016). Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Neglected Tropical Diseases, 10(10) doi:10.1371/journal.pntd.0005043 Shahid-ul-Islam, & Butola, B. S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International Journal of Biological Macromolecules, 121, 905-912. doi:10.1016/j.ijbiomac.2018.10.102 Sibanda, M., Focke, W., Braack, L., Leuteritz, A., Brünig, H., Tran, N. H. A., . . . Trümper, W. (2018). Bicomponent fibres for controlled release of volatile mosquito repellents. Materials Science and Engineering C, 91, 754-761. doi:10.1016/j.msec.2018.06.016 Sripradha, S. (2014). Betel leaf – the green gold. Journal of Pharmaceutical Sciences and Research, 6(1), 36-37. Retrieved from www.scopus.com Tavares, M., da Silva, M. R. M., de Oliveira de Siqueira, L. B., Rodrigues, R. A. S., Bodjolle-d'Almeira, L., dos Santos, E. P., & Ricci-Júnior, E. (2018). Trends in insect repellent formulations: A review. International Journal of Pharmaceutics, 539(1-2), 190-209. doi:10.1016/j.ijpharm.2018.01.046 Trongtokit, Y., Rongsriyam, Y., Komalamisra, N., & Apiwathnasorn, C. (2005). Comparative repellency of 38 essential oils against mosquito bites. Phytotherapy Research, 19(4), 303-309. doi:10.1002/ptr.1637 Van Langenhove, L., & Paul, R. (2014). Insect repellent finishes for textiles. Functional Finishes for Textiles: Improving Comfort, Performance and Protection, Retrieved from www.scopus.com Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsankar, A., Thanigaivel, A., Edwin, E. -., Selin-Rani, S., . . . Al-Dhabi, N. A. (2017). Comparative analysis of mosquito (diptera: Culicidae: Aedes aegypti liston) responses to the insecticide temephos and plant derived essential oil derived from piper betle L. Ecotoxicology and Environmental Safety, 139, 439-446. doi:10.1016/j.ecoenv.2017.01.026 Venturini, C. G., Jäger, E., Oliveira, C. P., Bernardi, A., Battastini, A. M. O., Guterres, S. S., & Pohlmann, A. R. (2011). Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375(1-3), 200-208. doi:10.1016/j.colsurfa.2010.12.011 Wathoni, N., Sriwidodo, Sofian, F. F., Narsa, A. C., & Mutiara, A. N. (2018). Repellent activity of essential oils from cananga odorata lamk. and cymbopogon nardus L. on corn starch-based thixogel. Journal of Young Pharmacists, 10(2), s118-s123. doi:10.5530/jyp.2018.2s.24 Xin, J. H., & Wang, X. W. (2017). Insect-repellent textiles. Engineering of high-performance textiles (pp. 335-348) doi:10.1016/B978-0-08-101273-4.00027-5 Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |