UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The sterling mechanical properties of titanium alloys have distinguished them as an essential material for varied applications especially in biomedical fields. The combination of good corrosion resistance in addition to light weight, non-toxicity and an outstanding biocompatibility makes them a sought-after material for production of medical implants. Owing to the surging demand for durable implants, it has become exigent for increased developmental researches on biomaterials to be accelerated. This will result in significant increase in implant production and Ti alloys will play a vital role among the several materials presently in use. Hence, this review critically analysed the important roles Ti alloys have played thus far in the implant production industry and recent development of titanium-based alloys with low elastic modulus similar to human bones as well as improved biocompatibility and wear resistance. ? IMechE 2020. |
References |
Addison, O., Davenport, A. J., Newport, R. J., Kalra, S., Monir, M., Mosselmans, J. F. W., . . . Martin, R. A. (2012). Do 'passive' medical titanium surfaces deteriorate in service in the absence of wear? Journal of the Royal Society Interface, 9(76), 3161-3164. doi:10.1098/rsif.2012.0438 Anderson, J. M., & Schoen, F. J. (0000). Retrieved from www.scopus.com Bahl, S., Shreyas, P., Trishul, M. A., Suwas, S., & Chatterjee, K. (2015). Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale, 7(17), 7704-7716. doi:10.1039/c5nr00574d Banerjee, D., & Williams, J. C. (2013). Perspectives on titanium science and technology. Acta Materialia, 61(3), 844-879. doi:10.1016/j.actamat.2012.10.043 Banerjee, S., & Mukhopadhyay, P. (2007). Phase Transformations: Examples from Titanium and Zirconium Alloys, Retrieved from www.scopus.com Bose, S., Banerjee, D., Shivaram, A., Tarafder, S., & Bandyopadhyay, A. (2018). Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Materials and Design, 151, 102-112. doi:10.1016/j.matdes.2018.04.049 Bose, S., Roy, M., Das, K., & Bandyopadhyay, A. (2009). Surface modification of titanium for load-bearing applications. Journal of Materials Science: Materials in Medicine, 20(SUPPL. 1), S19-S24. doi:10.1007/s10856-008-3418-1 Brady, G. S., & Clauser, H. R. (1991). Materials Handbook, Retrieved from www.scopus.com Clerc, C. O., Jedwab, M. R., Mayer, D. W., Thompson, P. J., & Stinson, J. S. (1997). Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. Journal of Biomedical Materials Research, 38(3), 229-234. doi:10.1002/(SICI)1097-4636(199723)38:3<229::AID-JBM7>3.0.CO;2-R Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., . . . Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013 Das, K., Bose, S., & Bandyopadhyay, A. (2009). TiO2 nanotubes on ti: Influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research - Part A, 90(1), 225-237. doi:10.1002/jbm.a.32088 Davidson, J. A., Mishra, A. K., Kovacs, P., & Poggie, R. A. (1994). New surface-hardened, low-modulus, corrosion-resistant ti-13nb-13zr alloy for total hip arthroplasty. Bio-Medical Materials and Engineering, 4(3), 231-243. doi:10.3233/BME-1994-4310 Diomidis, N., Mischler, S., More, N. S., & Roy, M. (2012). Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomaterialia, 8(2), 852-859. doi:10.1016/j.actbio.2011.09.034 Dunbar, M. J. (2010). The proximal modular neck in THA: A bridge too far: Affirms. Orthopedics, 33(9), 640. Retrieved from www.scopus.com Ellman, M. B., & Levine, B. R. (2013). Fracture of the modular femoral neck component in total hip arthroplasty. Journal of Arthroplasty, 28(1), 196.e1-196.e5. doi:10.1016/j.arth.2011.05.024 Faghihi, S., Azari, F., Li, H., Bateni, M. R., Szpunar, J. A., Vali, H., & Tabrizian, M. (2006). The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials, 27(19), 3532-3539. doi:10.1016/j.biomaterials.2006.02.027 Feng, X. J., Macak, J. M., Albu, S. P., & Schmuki, P. (2008). Electrochemical formation of self-organized anodic nanotube coating on ti-28Zr-8Nb biomedical alloy surface. Acta Biomaterialia, 4(2), 318-323. doi:10.1016/j.actbio.2007.08.005 Freemont, A. (2012). The pathology of joint replacement and tissue engineering. Diagnostic Histopathology, 18(4), 169-176. doi:10.1016/j.mpdhp.2012.01.004 Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54(3), 397-425. doi:10.1016/j.pmatsci.2008.06.004 Ghosh, S., Sanghavi, S., & Sancheti, P. (2018). Retrieved from www.scopus.com Granchi, D., Cenni, E., Giunti, A., & Baldini, N. (2012). Metal hypersensitivity testing in patients undergoing joint replacement: A systematic review. Journal of Bone and Joint Surgery - Series B, 94 B(8), 1126-1134. doi:10.1302/0301-620X.94B8 Greenfield, E. M., Tatro, J. M., Smith, M. V., Schnaser, E. A., & Wu, D. (2011). PI3Kγ deletion reduces variability in the in vivo osteolytic response induced by orthopaedic wear particles. Journal of Orthopaedic Research, 29(11), 1649-1653. doi:10.1002/jor.21440 Grupp, T. M., Weik, T., Bloemer, W., & Knaebel, H. -. (2010). Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material. BMC Musculoskeletal Disorders, 11 doi:10.1186/1471-2474-11-3 Hallab, N. J., & Jacobs, J. J. (2017). Chemokines associated with pathologic responses to orthopedic implant debris. Frontiers in Endocrinology, 8(JAN) doi:10.3389/fendo.2017.0005 Hallam, P., Haddad, F., & Cobb, J. (2004). Pain in the well-fixed, aseptic titanium hip replacement. the role of corrosion. Journal of Bone and Joint Surgery - Series B, 86(1), 27-30. doi:10.1302/0301-620x.86b1.14326 Hanawa, T. (2010). Overview of Metals and Applications 1, Retrieved from www.scopus.com Higo, Y., & Tomita, Y. (1994). , 148-155. Retrieved from www.scopus.com Hoseini, M., Bocher, P., Shahryari, A., Azari, F., Szpunar, J. A., & Vali, H. (2014). On the importance of crystallographic texture in the biocompatibility of titanium based substrate. Journal of Biomedical Materials Research - Part A, 102(10), 3631-3638. doi:10.1002/jbm.a.35028 Huot Carlson, J. C., Van Citters, D. W., Currier, J. H., Bryant, A. M., Mayor, M. B., & Collier, J. P. (2012). Femoral stem fracture and in vivo corrosion of retrieved modular femoral hips. Journal of Arthroplasty, 27(7), 1389-1396.e1. doi:10.1016/j.arth.2011.11.007 Ivanova, E., Bazaka, K., & Crawford, R. J. (2014). "Natural polymer biomaterials: Advanced applications". New Functional Biomaterials for Medicine and Healthcare, , 32-70. Retrieved from www.scopus.com Ivanova, E. P., Bazaka, K., & Crawford, R. J. (2014). Cytotoxicity and biocompatibility of metallic biomaterials. New Functional Biomaterials for Medicine and Healthcare, , 148-172. Retrieved from www.scopus.com Kopova, I., Stráský, J., & Harcuba, P. (2016). Retrieved from www.scopus.com Lakstein, D., Eliaz, N., Levi, O., Backstein, D., Kosashvili, Y., Safir, O., & Gross, A. E. (2011). Fracture of cementless femoral stems at the mid-stem junction in modular revision hip arthroplasty systems. Journal of Bone and Joint Surgery, 93(1), 57-65. doi:10.2106/JBJS.I.01589 Lausmaa, J. (1996). Surface spectroscopic characterization of titanium implant materials. Journal of Electron Spectroscopy and Related Phenomena, 81(3), 343-361. doi:10.1016/0368-2048(95)02530-8 Lee, J. -., Kim, H. -., Shin, K. -., & Koh, Y. -. (2010). Improving the strength and biocompatibility of porous titanium scaffolds by creating elongated pores coated with a bioactive, nanoporous TiO2 layer. Materials Letters, 64(22), 2526-2529. doi:10.1016/j.matlet.2010.08.038 Leyens, C., & Peters, M. (2003). Titanium and Titanium Alloys, Retrieved from www.scopus.com Lutjering, G., & Williams, J. C. (2007). Titanium, Retrieved from www.scopus.com Mehranfar, M., & Dehghani, K. (2011). Producing nanostructured super-austenitic steels by friction stir processing. Materials Science and Engineering A, 528(9), 3404-3408. doi:10.1016/j.msea.2011.01.016 Meng, Q., Guo, S., Liu, Q., Hu, L., & Zhao, X. (2014). A β-type TiNbZr alloy with low modulus and high strength for biomedical applications. Progress in Natural Science: Materials International, 24(2), 157-162. doi:10.1016/j.pnsc.2014.03.007 Minnath, M. A. (2018). Metals and alloys for biomedical applications. Fundamental biomaterials: Metals (pp. 167-174) doi:10.1016/B978-0-08-102205-4.00007-6 Retrieved from www.scopus.com Misra, S., & Raghuwanshi, S. (2018). Retrieved from www.scopus.com Morais, L. S., Serra, G. G., Muller, C. A., Andrade, L. R., Palermo, E. F. A., Elias, C. N., & Meyers, M. (2007). Titanium alloy mini-implants for orthodontic anchorage: Immediate loading and metal ion release. Acta Biomaterialia, 3(3 SPEC. ISS.), 331-339. doi:10.1016/j.actbio.2006.10.010 Murr, L. E. (2018). Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview. J Mater Sci Technol, , 1. Retrieved from www.scopus.com Nag, S., Banerjee, R., & Fraser, H. L. (2005). Microstructural evolution and strengthening mechanisms in ti-nb-zr-ta, ti-mo-zr-fe and ti-15Mo biocompatible alloys. Materials Science and Engineering C, 25(3), 357-362. doi:10.1016/j.msec.2004.12.013 Nakano, T. (0000). Mechanical properties of metallic biomaterials. Fundamental Biomater, Retrieved from www.scopus.com Niinomi, M. (2007). Fatigue characteristics of metallic biomaterials. International Journal of Fatigue, 29(6), 992-1000. doi:10.1016/j.ijfatigue.2006.09.021 Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x Nikolova, M. P., & Yankov, E. H. (2019). Retrieved from www.scopus.com Nuevo-Ordóñez, Y., Montes-Bayón, M., Blanco-González, E., Paz-Aparicio, J., Raimundez, J. D., Tejerina, J. M., . . . Sanz-Medel, A. (2011). Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Analytical and Bioanalytical Chemistry, 401(9), 2747-2754. doi:10.1007/s00216-011-5232-8 Oh, S., Daraio, C., Chen, L. -., Pisanic, T. R., Fiñones, R. R., & Jin, S. (2006). Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research - Part A, 78(1), 97-103. doi:10.1002/jbm.a.30722 Ong, K. L., Yun, B. M., & White, J. B. (2015). New biomaterials for orthopedic implants. Orthopedic Research and Reviews, 7, 107-130. doi:10.2147/ORR.S63437 Polmear, I. J. (2006). Light Alloys: From Traditional Alloys to Nanocrystals, , 141. Retrieved from www.scopus.com Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering C, 26(8), 1269-1277. doi:10.1016/j.msec.2005.08.032 Rao, S., Ushida, T., Tateishi, T., Okazaki, Y., & Asao, S. (1996). Effect of ti, al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-Medical Materials and Engineering, 6(2), 79-86. doi:10.3233/bme-1996-6202 Renganathan, G., Tanneru, N., & Madurai, S. L. (2018). Orthopedical and biomedical applications of titanium and zirconium metals. Fundamental biomaterials: Metals (pp. 211-241) doi:10.1016/B978-0-08-102205-4.00010-6 Retrieved from www.scopus.com Ricciardi, B. F., Nocon, A. A., Jerabek, S. A., Wilner, G., Kaplowitz, E., Goldring, S. R., . . . Perino, G. (2016). Histopathological characterization of corrosion product associated adverse local tissue reaction in hip implants: A study of 285 cases histopathology. BMC Clinical Pathology, 16(1) doi:10.1186/s12907-016-0025-9 Saji, V. S., Choe, H. C., & Brantley, W. A. (2009). An electrochemical study on self-ordered nanoporous and nanotubular oxide on ti-35Nb-5Ta-7Zr alloy for biomedical applications. Acta Biomaterialia, 5(6), 2303-2310. doi:10.1016/j.actbio.2009.02.017 Saldaña, L., & Vilaboa, N. (2010). Effects of micrometric titanium particles on osteoblast attachment and cytoskeleton architecture. Acta Biomaterialia, 6(4), 1649-1660. doi:10.1016/j.actbio.2009.10.033 Scharf, B., Clement, C. C., Zolla, V., Perino, G., Yan, B., Elci, S. G., . . . Santambrogio, L. (2014). Molecular analysis of chromium and cobalt-related toxicity. Scientific Reports, 4 doi:10.1038/srep05729 Soman, S., & Ajitha, A. R. (0000). Retrieved from www.scopus.com Srivastava, S. K., & Pal, B. G. (2018). Retrieved from www.scopus.com Steinemann, S. G. (1980). Corrosion of surgical implants - in vivo and in vitro tests. Evaluation of Biomaterials, , 1-34. Retrieved from www.scopus.com Sun, F., Hao, Y. L., Zhang, J. Y., & Prima, F. (2011). Contribution of nano-sized lamellar microstructure on recoverable strain of ti-24Nb-4Zr-7.9Sn titanium alloy. Materials Science and Engineering A, 528(25-26), 7811-7815. doi:10.1016/j.msea.2011.06.052 Suwas, S., & Gurao, N. P. (2008). Crystallographic texture in materials. Journal of the Indian Institute of Science, 88(2), 151-177. Retrieved from www.scopus.com Tao, N. R., Wang, Z. B., Tong, W. P., Sui, M. L., Lu, J., & Lu, K. (2002). An investigation of surface nanocrystallization mechanism in fe induced by surface mechanical attrition treatment. Acta Materialia, 50(18), 4603-4616. doi:10.1016/S1359-6454(02)00310-5 Teoh, S. H. (2000). Fatigue of biomaterials: A review. International Journal of Fatigue, 22(10), 825-837. doi:10.1016/S0142-1123(00)00052-9 Tripp, E. H. (2008). Materials handbook. Nature, Retrieved from www.scopus.com Tsuchiya, H., Macak, J. M., Ghicov, A., Tang, Y. C., Fujimoto, S., Niinomi, M., . . . Schmuki, P. (2006). Nanotube oxide coating on ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta, 52(1), 94-101. doi:10.1016/j.electacta.2006.03.087 Wang, K. (1996). The use of titanium for medical applications in the USA. Materials Science and Engineering A, 213(1-2), 134-137. doi:10.1016/0921-5093(96)10243-4 Wang, L., Lu, W., Qin, J., Zhang, F., & Zhang, D. (2008). Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy. Materials Science and Engineering A, 490(1-2), 421-426. doi:10.1016/j.msea.2008.03.003 Wang, Q., Eltit, F., & Wang, R. (2020). Corrosion of orthopaedic implants. Encycloped Biomed Eng, 2019, 65-85. Retrieved from www.scopus.com Wilke, A., Endres, S., Griss, P., & Herz, U. (2002). Cytokine profile of a human bone marrow cell culture on exposure to titanium-aluminium-vanadium particles. [Zytokinprofil einer humanen knochenmarkszellkultur unter exposition von titan-aluminium-vanadium-partikeln] Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete, 140(1), 83-89. doi:10.1055/s-2002-22096 Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 11(1-2), 1-18. doi:10.1089/ten.2005.11.1 Wilson, J. (2018). Retrieved from www.scopus.com Wolf, M. F., & Coleman, K. P. (0000). Retrieved from www.scopus.com Wolfarth, D., & Ducheyne, P. (1994). Effect of a change in interfacial geometry on the fatigue strength of porous‐coated Ti‐6Al‐4V. Journal of Biomedical Materials Research, 28(4), 417-425. doi:10.1002/jbm.820280403 Wright, G., Sporer, S., Urban, R., & Jacobs, J. (2010). Fracture of a modular femoral neck after total hip arthroplasty: A case report. Journal of Bone and Joint Surgery, 92(6), 1518-1521. doi:10.2106/JBJS.I.01033 Xu, Z., & Jiang, X. (2020). Rapid fabrication of TiO2 coatings with nanoporous composite structure and evaluation of application in artificial implants. Surface and Coatings Technology, 381 doi:10.1016/j.surfcoat.2019.125094 Zaffe, D., Bertoldi, C., & Consolo, U. (2004). Accumulation of aluminium in lamellar bone after implantation of titanium plates, ti-6Al-4V screws, hydroxyapatite granules. Biomaterials, 25(17), 3837-3844. doi:10.1016/j.biomaterials.2003.10.020 Zardiackas, L. D., Mitchell, D. W., & Disegi, J. A. (1996). Characterization of ti-15Mo beta titanium alloy for orthopaedic implant applications. ASTM Special Technical Publication, 1272, 60-74. doi:10.1520/stp16070s |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |