UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :QA Mathematics
ISSN :09544062
Main Author :Franklin Amaechi Anene
Additional Authors :Zainol, Ismail
Title :Biomedical materials: a review of titanium based alloys
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
The sterling mechanical properties of titanium alloys have distinguished them as an essential material for varied applications especially in biomedical fields. The combination of good corrosion resistance in addition to light weight, non-toxicity and an outstanding biocompatibility makes them a sought-after material for production of medical implants. Owing to the surging demand for durable implants, it has become exigent for increased developmental researches on biomaterials to be accelerated. This will result in significant increase in implant production and Ti alloys will play a vital role among the several materials presently in use. Hence, this review critically analysed the important roles Ti alloys have played thus far in the implant production industry and recent development of titanium-based alloys with low elastic modulus similar to human bones as well as improved biocompatibility and wear resistance. ? IMechE 2020.

References

Addison, O., Davenport, A. J., Newport, R. J., Kalra, S., Monir, M., Mosselmans, J. F. W., . . . Martin, R. A. (2012). Do 'passive' medical titanium surfaces deteriorate in service in the absence of wear? Journal of the Royal Society Interface, 9(76), 3161-3164. doi:10.1098/rsif.2012.0438

Anderson, J. M., & Schoen, F. J. (0000). Retrieved from www.scopus.com

Bahl, S., Shreyas, P., Trishul, M. A., Suwas, S., & Chatterjee, K. (2015). Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale, 7(17), 7704-7716. doi:10.1039/c5nr00574d

Banerjee, D., & Williams, J. C. (2013). Perspectives on titanium science and technology. Acta Materialia, 61(3), 844-879. doi:10.1016/j.actamat.2012.10.043

Banerjee, S., & Mukhopadhyay, P. (2007). Phase Transformations: Examples from Titanium and Zirconium Alloys, Retrieved from www.scopus.com

Bose, S., Banerjee, D., Shivaram, A., Tarafder, S., & Bandyopadhyay, A. (2018). Calcium phosphate coated 3D printed porous titanium with nanoscale surface modification for orthopedic and dental applications. Materials and Design, 151, 102-112. doi:10.1016/j.matdes.2018.04.049

Bose, S., Roy, M., Das, K., & Bandyopadhyay, A. (2009). Surface modification of titanium for load-bearing applications. Journal of Materials Science: Materials in Medicine, 20(SUPPL. 1), S19-S24. doi:10.1007/s10856-008-3418-1

Brady, G. S., & Clauser, H. R. (1991). Materials Handbook, Retrieved from www.scopus.com

Clerc, C. O., Jedwab, M. R., Mayer, D. W., Thompson, P. J., & Stinson, J. S. (1997). Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants. Journal of Biomedical Materials Research, 38(3), 229-234. doi:10.1002/(SICI)1097-4636(199723)38:3<229::AID-JBM7>3.0.CO;2-R

Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., . . . Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013

Das, K., Bose, S., & Bandyopadhyay, A. (2009). TiO2 nanotubes on ti: Influence of nanoscale morphology on bone cell-materials interaction. Journal of Biomedical Materials Research - Part A, 90(1), 225-237. doi:10.1002/jbm.a.32088

Davidson, J. A., Mishra, A. K., Kovacs, P., & Poggie, R. A. (1994). New surface-hardened, low-modulus, corrosion-resistant ti-13nb-13zr alloy for total hip arthroplasty. Bio-Medical Materials and Engineering, 4(3), 231-243. doi:10.3233/BME-1994-4310

Diomidis, N., Mischler, S., More, N. S., & Roy, M. (2012). Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomaterialia, 8(2), 852-859. doi:10.1016/j.actbio.2011.09.034

Dunbar, M. J. (2010). The proximal modular neck in THA: A bridge too far: Affirms. Orthopedics, 33(9), 640. Retrieved from www.scopus.com

Ellman, M. B., & Levine, B. R. (2013). Fracture of the modular femoral neck component in total hip arthroplasty. Journal of Arthroplasty, 28(1), 196.e1-196.e5. doi:10.1016/j.arth.2011.05.024

Faghihi, S., Azari, F., Li, H., Bateni, M. R., Szpunar, J. A., Vali, H., & Tabrizian, M. (2006). The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials, 27(19), 3532-3539. doi:10.1016/j.biomaterials.2006.02.027

Feng, X. J., Macak, J. M., Albu, S. P., & Schmuki, P. (2008). Electrochemical formation of self-organized anodic nanotube coating on ti-28Zr-8Nb biomedical alloy surface. Acta Biomaterialia, 4(2), 318-323. doi:10.1016/j.actbio.2007.08.005

Freemont, A. (2012). The pathology of joint replacement and tissue engineering. Diagnostic Histopathology, 18(4), 169-176. doi:10.1016/j.mpdhp.2012.01.004

Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54(3), 397-425. doi:10.1016/j.pmatsci.2008.06.004

Ghosh, S., Sanghavi, S., & Sancheti, P. (2018). Retrieved from www.scopus.com

Granchi, D., Cenni, E., Giunti, A., & Baldini, N. (2012). Metal hypersensitivity testing in patients undergoing joint replacement: A systematic review. Journal of Bone and Joint Surgery - Series B, 94 B(8), 1126-1134. doi:10.1302/0301-620X.94B8

Greenfield, E. M., Tatro, J. M., Smith, M. V., Schnaser, E. A., & Wu, D. (2011). PI3Kγ deletion reduces variability in the in vivo osteolytic response induced by orthopaedic wear particles. Journal of Orthopaedic Research, 29(11), 1649-1653. doi:10.1002/jor.21440

Grupp, T. M., Weik, T., Bloemer, W., & Knaebel, H. -. (2010). Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material. BMC Musculoskeletal Disorders, 11 doi:10.1186/1471-2474-11-3

Hallab, N. J., & Jacobs, J. J. (2017). Chemokines associated with pathologic responses to orthopedic implant debris. Frontiers in Endocrinology, 8(JAN) doi:10.3389/fendo.2017.0005

Hallam, P., Haddad, F., & Cobb, J. (2004). Pain in the well-fixed, aseptic titanium hip replacement. the role of corrosion. Journal of Bone and Joint Surgery - Series B, 86(1), 27-30. doi:10.1302/0301-620x.86b1.14326

Hanawa, T. (2010). Overview of Metals and Applications 1, Retrieved from www.scopus.com

Higo, Y., & Tomita, Y. (1994). , 148-155. Retrieved from www.scopus.com

Hoseini, M., Bocher, P., Shahryari, A., Azari, F., Szpunar, J. A., & Vali, H. (2014). On the importance of crystallographic texture in the biocompatibility of titanium based substrate. Journal of Biomedical Materials Research - Part A, 102(10), 3631-3638. doi:10.1002/jbm.a.35028

Huot Carlson, J. C., Van Citters, D. W., Currier, J. H., Bryant, A. M., Mayor, M. B., & Collier, J. P. (2012). Femoral stem fracture and in vivo corrosion of retrieved modular femoral hips. Journal of Arthroplasty, 27(7), 1389-1396.e1. doi:10.1016/j.arth.2011.11.007

Ivanova, E., Bazaka, K., & Crawford, R. J. (2014). "Natural polymer biomaterials: Advanced applications". New Functional Biomaterials for Medicine and Healthcare, , 32-70. Retrieved from www.scopus.com

Ivanova, E. P., Bazaka, K., & Crawford, R. J. (2014). Cytotoxicity and biocompatibility of metallic biomaterials. New Functional Biomaterials for Medicine and Healthcare, , 148-172. Retrieved from www.scopus.com

Kopova, I., Stráský, J., & Harcuba, P. (2016). Retrieved from www.scopus.com

Lakstein, D., Eliaz, N., Levi, O., Backstein, D., Kosashvili, Y., Safir, O., & Gross, A. E. (2011). Fracture of cementless femoral stems at the mid-stem junction in modular revision hip arthroplasty systems. Journal of Bone and Joint Surgery, 93(1), 57-65. doi:10.2106/JBJS.I.01589

Lausmaa, J. (1996). Surface spectroscopic characterization of titanium implant materials. Journal of Electron Spectroscopy and Related Phenomena, 81(3), 343-361. doi:10.1016/0368-2048(95)02530-8

Lee, J. -., Kim, H. -., Shin, K. -., & Koh, Y. -. (2010). Improving the strength and biocompatibility of porous titanium scaffolds by creating elongated pores coated with a bioactive, nanoporous TiO2 layer. Materials Letters, 64(22), 2526-2529. doi:10.1016/j.matlet.2010.08.038

Leyens, C., & Peters, M. (2003). Titanium and Titanium Alloys, Retrieved from www.scopus.com

Lutjering, G., & Williams, J. C. (2007). Titanium, Retrieved from www.scopus.com

Mehranfar, M., & Dehghani, K. (2011). Producing nanostructured super-austenitic steels by friction stir processing. Materials Science and Engineering A, 528(9), 3404-3408. doi:10.1016/j.msea.2011.01.016

Meng, Q., Guo, S., Liu, Q., Hu, L., & Zhao, X. (2014). A β-type TiNbZr alloy with low modulus and high strength for biomedical applications. Progress in Natural Science: Materials International, 24(2), 157-162. doi:10.1016/j.pnsc.2014.03.007

Minnath, M. A. (2018). Metals and alloys for biomedical applications. Fundamental biomaterials: Metals (pp. 167-174) doi:10.1016/B978-0-08-102205-4.00007-6 Retrieved from www.scopus.com

Misra, S., & Raghuwanshi, S. (2018). Retrieved from www.scopus.com

Morais, L. S., Serra, G. G., Muller, C. A., Andrade, L. R., Palermo, E. F. A., Elias, C. N., & Meyers, M. (2007). Titanium alloy mini-implants for orthodontic anchorage: Immediate loading and metal ion release. Acta Biomaterialia, 3(3 SPEC. ISS.), 331-339. doi:10.1016/j.actbio.2006.10.010

Murr, L. E. (2018). Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview. J Mater Sci Technol, , 1. Retrieved from www.scopus.com

Nag, S., Banerjee, R., & Fraser, H. L. (2005). Microstructural evolution and strengthening mechanisms in ti-nb-zr-ta, ti-mo-zr-fe and ti-15Mo biocompatible alloys. Materials Science and Engineering C, 25(3), 357-362. doi:10.1016/j.msec.2004.12.013

Nakano, T. (0000). Mechanical properties of metallic biomaterials. Fundamental Biomater, Retrieved from www.scopus.com

Niinomi, M. (2007). Fatigue characteristics of metallic biomaterials. International Journal of Fatigue, 29(6), 992-1000. doi:10.1016/j.ijfatigue.2006.09.021

Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 243(1-2), 231-236. doi:10.1016/s0921-5093(97)00806-x

Nikolova, M. P., & Yankov, E. H. (2019). Retrieved from www.scopus.com

Nuevo-Ordóñez, Y., Montes-Bayón, M., Blanco-González, E., Paz-Aparicio, J., Raimundez, J. D., Tejerina, J. M., . . . Sanz-Medel, A. (2011). Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Analytical and Bioanalytical Chemistry, 401(9), 2747-2754. doi:10.1007/s00216-011-5232-8

Oh, S., Daraio, C., Chen, L. -., Pisanic, T. R., Fiñones, R. R., & Jin, S. (2006). Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research - Part A, 78(1), 97-103. doi:10.1002/jbm.a.30722

Ong, K. L., Yun, B. M., & White, J. B. (2015). New biomaterials for orthopedic implants. Orthopedic Research and Reviews, 7, 107-130. doi:10.2147/ORR.S63437

Polmear, I. J. (2006). Light Alloys: From Traditional Alloys to Nanocrystals, , 141. Retrieved from www.scopus.com

Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering C, 26(8), 1269-1277. doi:10.1016/j.msec.2005.08.032

Rao, S., Ushida, T., Tateishi, T., Okazaki, Y., & Asao, S. (1996). Effect of ti, al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-Medical Materials and Engineering, 6(2), 79-86. doi:10.3233/bme-1996-6202

Renganathan, G., Tanneru, N., & Madurai, S. L. (2018). Orthopedical and biomedical applications of titanium and zirconium metals. Fundamental biomaterials: Metals (pp. 211-241) doi:10.1016/B978-0-08-102205-4.00010-6 Retrieved from www.scopus.com

Ricciardi, B. F., Nocon, A. A., Jerabek, S. A., Wilner, G., Kaplowitz, E., Goldring, S. R., . . . Perino, G. (2016). Histopathological characterization of corrosion product associated adverse local tissue reaction in hip implants: A study of 285 cases histopathology. BMC Clinical Pathology, 16(1) doi:10.1186/s12907-016-0025-9

Saji, V. S., Choe, H. C., & Brantley, W. A. (2009). An electrochemical study on self-ordered nanoporous and nanotubular oxide on ti-35Nb-5Ta-7Zr alloy for biomedical applications. Acta Biomaterialia, 5(6), 2303-2310. doi:10.1016/j.actbio.2009.02.017

Saldaña, L., & Vilaboa, N. (2010). Effects of micrometric titanium particles on osteoblast attachment and cytoskeleton architecture. Acta Biomaterialia, 6(4), 1649-1660. doi:10.1016/j.actbio.2009.10.033

Scharf, B., Clement, C. C., Zolla, V., Perino, G., Yan, B., Elci, S. G., . . . Santambrogio, L. (2014). Molecular analysis of chromium and cobalt-related toxicity. Scientific Reports, 4 doi:10.1038/srep05729

Soman, S., & Ajitha, A. R. (0000). Retrieved from www.scopus.com

Srivastava, S. K., & Pal, B. G. (2018). Retrieved from www.scopus.com

Steinemann, S. G. (1980). Corrosion of surgical implants - in vivo and in vitro tests. Evaluation of Biomaterials, , 1-34. Retrieved from www.scopus.com

Sun, F., Hao, Y. L., Zhang, J. Y., & Prima, F. (2011). Contribution of nano-sized lamellar microstructure on recoverable strain of ti-24Nb-4Zr-7.9Sn titanium alloy. Materials Science and Engineering A, 528(25-26), 7811-7815. doi:10.1016/j.msea.2011.06.052

Suwas, S., & Gurao, N. P. (2008). Crystallographic texture in materials. Journal of the Indian Institute of Science, 88(2), 151-177. Retrieved from www.scopus.com

Tao, N. R., Wang, Z. B., Tong, W. P., Sui, M. L., Lu, J., & Lu, K. (2002). An investigation of surface nanocrystallization mechanism in fe induced by surface mechanical attrition treatment. Acta Materialia, 50(18), 4603-4616. doi:10.1016/S1359-6454(02)00310-5

Teoh, S. H. (2000). Fatigue of biomaterials: A review. International Journal of Fatigue, 22(10), 825-837. doi:10.1016/S0142-1123(00)00052-9

Tripp, E. H. (2008). Materials handbook. Nature, Retrieved from www.scopus.com

Tsuchiya, H., Macak, J. M., Ghicov, A., Tang, Y. C., Fujimoto, S., Niinomi, M., . . . Schmuki, P. (2006). Nanotube oxide coating on ti-29Nb-13Ta-4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta, 52(1), 94-101. doi:10.1016/j.electacta.2006.03.087

Wang, K. (1996). The use of titanium for medical applications in the USA. Materials Science and Engineering A, 213(1-2), 134-137. doi:10.1016/0921-5093(96)10243-4

Wang, L., Lu, W., Qin, J., Zhang, F., & Zhang, D. (2008). Microstructure and mechanical properties of cold-rolled TiNbTaZr biomedical β titanium alloy. Materials Science and Engineering A, 490(1-2), 421-426. doi:10.1016/j.msea.2008.03.003

Wang, Q., Eltit, F., & Wang, R. (2020). Corrosion of orthopaedic implants. Encycloped Biomed Eng, 2019, 65-85. Retrieved from www.scopus.com

Wilke, A., Endres, S., Griss, P., & Herz, U. (2002). Cytokine profile of a human bone marrow cell culture on exposure to titanium-aluminium-vanadium particles. [Zytokinprofil einer humanen knochenmarkszellkultur unter exposition von titan-aluminium-vanadium-partikeln] Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete, 140(1), 83-89. doi:10.1055/s-2002-22096

Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 11(1-2), 1-18. doi:10.1089/ten.2005.11.1

Wilson, J. (2018). Retrieved from www.scopus.com

Wolf, M. F., & Coleman, K. P. (0000). Retrieved from www.scopus.com

Wolfarth, D., & Ducheyne, P. (1994). Effect of a change in interfacial geometry on the fatigue strength of porous‐coated Ti‐6Al‐4V. Journal of Biomedical Materials Research, 28(4), 417-425. doi:10.1002/jbm.820280403

Wright, G., Sporer, S., Urban, R., & Jacobs, J. (2010). Fracture of a modular femoral neck after total hip arthroplasty: A case report. Journal of Bone and Joint Surgery, 92(6), 1518-1521. doi:10.2106/JBJS.I.01033

Xu, Z., & Jiang, X. (2020). Rapid fabrication of TiO2 coatings with nanoporous composite structure and evaluation of application in artificial implants. Surface and Coatings Technology, 381 doi:10.1016/j.surfcoat.2019.125094

Zaffe, D., Bertoldi, C., & Consolo, U. (2004). Accumulation of aluminium in lamellar bone after implantation of titanium plates, ti-6Al-4V screws, hydroxyapatite granules. Biomaterials, 25(17), 3837-3844. doi:10.1016/j.biomaterials.2003.10.020

Zardiackas, L. D., Mitchell, D. W., & Disegi, J. A. (1996). Characterization of ti-15Mo beta titanium alloy for orthopaedic implant applications. ASTM Special Technical Publication, 1272, 60-74. doi:10.1520/stp16070s


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)