UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science
ISSN :09441344
Main Author :Suriani Abu Bakar
Additional Authors :Azmi Mohamed
Norhayati Hashim
Title :Carbon nanotubes from waste cooking palm oil as adsorbent materials for the adsorption of heavy metal ions
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Environmental Science and Pollution Research
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89% and high crystallinity proven by low ID/IG ratio (0.43). Moreover, the ferromagnetic response of CNTs showed that the average coercivity and magnetization saturation were found to be 551.5 Oe and 13.4 emu/g, respectively. These produced WCPO-based CNTs were further used as heavy metal ions adsorbent for wastewater treatment application. Some optimizations, such as the effect of different adsorbent dosage, varied initial pH solution, and various heavy metal ions, were investigated. The adsorption studies showed that the optimum adsorbent dosage was 1.8 g/L when it was applied to 100 mg/L Cu (II) solution at neutral pH (pH 7). Further measurement then showed that high Cu (II) ion removal percentage (~80%) was achieved when it was applied at very acidic solution (pH 2). Last measurement confirmed that the produced WCPO-based CNTs successfully removed different heavy metal ions in the following order: Fe (II) > Zn (II) ? Cu (II) with the removal percentage in the range of 99.2 to 99.9%. The adsorption isotherm for Cu (II) was better fitted by Langmuir model with a correlation coefficient of 0.82751. WCPO-based CNTs can be a potential material to be applied as adsorbent in heavy metal ion removal. ? 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

References

Adeli, M., Yamini, Y., & Faraji, M. (2017). Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arabian Journal of Chemistry, 10, S514-S521. doi:10.1016/j.arabjc.2012.10.012

Ahangari, A., Raygan, S., & Ataie, A. (2019). Capabilities of nickel zinc ferrite and its nanocomposite with CNT for adsorption of arsenic (V) ions from wastewater. Journal of Environmental Chemical Engineering, 7(6) doi:10.1016/j.jece.2019.103493

Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M. H., Chii, Y. Y., & Siddique, B. M. (2009). Removal of cu(II) and pb(II) ions from aqueous solutions by adsorption on sawdust of meranti wood. Desalination, 247(1-3), 636-646. doi:10.1016/j.desal.2009.01.007

Ahmad, M., Wang, J., Xu, J., Zhang, Q., & Zhang, B. (2020). Magnetic tubular carbon nanofibers as efficient cu(II) ion adsorbent from wastewater. Journal of Cleaner Production, 252 doi:10.1016/j.jclepro.2019.119825

Ahmadpour, A., Eftekhari, N., & Ayati, A. (2014). Performance of MWCNTs and a low-cost adsorbent for chromium(VI) ion removal. Journal of Nanostructure in Chemistry, 4(4), 171-178. doi:10.1007/s40097-014-0119-9

Ali, W. N. N. W., Sufian, S., & Abdullah, M. Z. (2016). Green functionalization: Comparison of different carbonaceous materials. Paper presented at the Procedia Engineering, , 148 795-805. doi:10.1016/j.proeng.2016.06.566 Retrieved from www.scopus.com

Almomani, F., Bhosale, R., Khraisheh, M., kumar, A., & Almomani, T. (2020). Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Applied Surface Science, 506 doi:10.1016/j.apsusc.2019.144924

Alves, D. C. S., Gonçalves, J. O., Coseglio, B. B., Burgo, T. A. L., Dotto, G. L., Pinto, L. A. A., & Cadaval, T. R. S., Jr. (2019). Adsorption of phenol onto chitosan hydrogel scaffold modified with carbon nanotubes. Journal of Environmental Chemical Engineering, 7(6) doi:10.1016/j.jece.2019.103460

Amen, R., Yaseen, M., Mukhtar, A., Klemeš, J. J., Saqib, S., Ullah, S., . . . Bokhari, A. (2020). Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob. Cleaner Engineering and Technology, 1 doi:10.1016/j.clet.2020.100006

Arshadi, M., Amiri, M. J., & Mousavi, S. (2014). Kinetic, equilibrium and thermodynamic investigations of ni(II), cd(II), cu(II) and co(II) adsorption on barley straw ash. Water Resources and Industry, 6, 1-17. doi:10.1016/j.wri.2014.06.001

Balintova, M., Holub, M., & Singovszka, E. (2012). Study of iron, copper and zinc removal from acidic solutions by sorption. Chemical Engineering Transactions, 28, 175-180. doi:10.3303/CET1228030

Bartczak, P., Norman, M., Klapiszewski, Ł., Karwańska, N., Kawalec, M., Baczyńska, M., . . . Jesionowski, T. (2018). Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arabian Journal of Chemistry, 11(8), 1209-1222. doi:10.1016/j.arabjc.2015.07.018

Bayazit, T. S., & Kerkez, Ö. (2014). Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites. Chemical Engineering Research and Design, 92(11), 2725-2733. doi:10.1016/j.cherd.2014.02.007

Bernard, E., & Jimoh, A. (2013). Adsorption of pb, fe, cu and zn from industrial electroplating wastewater by orange peel activated carbon. International Journal of Engineering and Applied Sciences, 4(2), 95-103. Retrieved from www.scopus.com

Bollen, P., Quievy, N., Detrembleur, C., Thomassin, J. M., Monnereau, L., Bailly, C., . . . Pardoen, T. (2016). Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb. Materials and Design, 89, 323-334. doi:10.1016/j.matdes.2015.09.129

Božić, D., Stanković, V., Gorgievski, M., Bogdanović, G., & Kovačević, R. (2009). Adsorption of heavy metal ions by sawdust of deciduous trees. Journal of Hazardous Materials, 171(1-3), 684-692. doi:10.1016/j.jhazmat.2009.06.055

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9) doi:10.1016/j.heliyon.2020.e04691

Chwastowski, J., Staroń, P., Kołoczek, H., & Banach, M. (2017). Adsorption of hexavalent chromium from aqueous solutions using canadian peat and coconut fiber. Journal of Molecular Liquids, 248, 981-989. doi:10.1016/j.molliq.2017.10.152

Das, R., Abd Hamid, S. B., Ali, M. E., Ismail, A. F., Annuar, M. S. M., & Ramakrishna, S. (2014). Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 354, 160-179. doi:10.1016/j.desal.2014.09.032

Duan, C., Ma, T., Wang, J., & Zhou, Y. (2020). Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. Journal of Water Process Engineering, 37 doi:10.1016/j.jwpe.2020.101339

Edwards, E. R., Antunes, E. F., Botelho, E. C., Baldan, M. R., & Corat, E. J. (2011). Evaluation of residual iron in carbon nanotubes purified by acid treatments. Applied Surface Science, 258(2), 641-648. doi:10.1016/j.apsusc.2011.07.032

Fernández-Luqueño, F., López-Valdez, F., Gamero-Melo, P., Luna-Suárez, S., Aguilera-González, E. N., Martínez, A. I., . . . Pérez-Velázquez, I. R. (2013). Heavy metal pollution in drinking water — a global risk for human health: A review. Afr.J.Environ.Sci.Technol., 7(7), 567-584. Retrieved from www.scopus.com

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. doi:10.1016/j.cej.2009.09.013

Franus, M., & Bandura, L. (2014). Sorption of heavy metal ions from aqueous solution by glauconite. Fresenius Environmental Bulletin, 23(3 A), 825-839. Retrieved from www.scopus.com

Fu, D., Ma, Q., Zeng, X., Chen, J., Zhang, W., & Li, D. (2013). Synthesis and magnetic properties of aligned carbon nanotubes by microwave-assisted pyrolysis of acetylene. Physica E: Low-Dimensional Systems and Nanostructures, 54, 185-190. doi:10.1016/j.physe.2013.06.022

Gangupomu, R. H., Sattler, M. L., & Ramirez, D. (2016). Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities. Journal of Hazardous Materials, 302, 362-374. doi:10.1016/j.jhazmat.2015.09.002

Gao, A., Xie, K., Song, X., Zhang, K., & Hou, A. (2017). Removal of the heavy metal ions from aqueous solution using modified natural biomaterial membrane based on silk fibroin. Ecological Engineering, 99, 343-348. doi:10.1016/j.ecoleng.2016.11.008

Gupta, V. K., Agarwal, S., Bharti, A. K., & Sadegh, H. (2017). Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced cu (II) removal. Journal of Molecular Liquids, 230, 667-673. doi:10.1016/j.molliq.2017.01.083

Gupta, V. K., Mittal, A., & Gajbe, V. (2005). Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials. Journal of Colloid and Interface Science, 284(1), 89-98. doi:10.1016/j.jcis.2004.09.055

Hao, Y. -., Man, C., & Hu, Z. -. (2010). Effective removal of cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. Journal of Hazardous Materials, 184(1-3), 392-399. doi:10.1016/j.jhazmat.2010.08.048

Huang, Z. -., Wang, X. -., & Yang, D. -. (2015). Adsorption of cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Science and Engineering, 8(3), 226-232. doi:10.1016/j.wse.2015.01.009

Ihsanullah, Abbas, A., Al-Amer, A. M., Laoui, T., Al-Marri, M. J., Nasser, M. S., . . . Atieh, M. A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 157, 141-161. doi:10.1016/j.seppur.2015.11.039

Kamari, A., & Ngah, W. S. (2010). Adsorption of cu(II) and cr(VI) onto treated shorea dasyphylla bark: Isotherm, kinetics, and thermodynamic studies. Separation Science and Technology, 45(4), 486-496. doi:10.1080/01496390903526717

Kamari, A., Yusoff, S. N. M., Abdullah, F., & Putra, W. P. (2014). Biosorptive removal of cu(II), ni(II) and pb(II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. Journal of Environmental Chemical Engineering, 2(4), 1912-1919. doi:10.1016/j.jece.2014.08.014

Karami, H. (2013). Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal, 219, 209-216. doi:10.1016/j.cej.2013.01.022

Khandanlou, R., Ahmad, M. B., Masoumi, H. R. F., Shameli, K., Basri, M., & Kalantari, K. (2015). Rapid adsorption of copper(II) and lead(II) by rice straw/Fe3O4 nanocomposite: Optimization, equilibrium isotherms, and adsorption kinetics study. PLoS ONE, 10(3) doi:10.1371/journal.pone.0120264

Kosa, S. A., Al-Zhrani, G., & Abdel Salam, M. (2012). Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 181-182, 159-168. doi:10.1016/j.cej.2011.11.044

Li, H., Xiao, D. -., He, H., Lin, R., & Zuo, P. -. (2013). Adsorption behavior and adsorption mechanism of cu(II) ions on amino-functionalized magnetic nanoparticles. Transactions of Nonferrous Metals Society of China (English Edition), 23(9), 2657-2665. doi:10.1016/S1003-6326(13)62782-X

Li, Y. -., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., . . . Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), 2787-2792. doi:10.1016/S0008-6223(03)00392-0

Liu, C., & Cheng, H. -. (2005). Carbon nanotubes for clean energy applications. Journal of Physics D: Applied Physics, 38(14), R231-R252. doi:10.1088/0022-3727/38/14/R01

Liu, J., Chen, Y., Han, T., Cheng, M., Zhang, W., Long, J., & Fu, X. (2019). A biomimetic SiO2@chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water. Chemosphere, 214, 738-742. doi:10.1016/j.chemosphere.2018.09.172

Liu, S., Shen, Q., Cao, Y., Gan, L., Wang, Z., Steigerwald, M. L., & Guo, X. (2010). Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coordination Chemistry Reviews, 254(9-10), 1101-1116. doi:10.1016/j.ccr.2009.11.007

Liu, X., Guan, J., Lai, G., Xu, Q., Bai, X., Wang, Z., & Cui, S. (2020). Stimuli-responsive adsorption behavior toward heavy metal ions based on comb polymer functionalized magnetic nanoparticles. Journal of Cleaner Production, 253 doi:10.1016/j.jclepro.2019.119915

Lu, C., Chung, Y. -., & Chang, K. -. (2006). Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials, 138(2), 304-310. doi:10.1016/j.jhazmat.2006.05.076

Lu, J., Drzal, L. T., Worden, R. M., & Lee, I. (2007). Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chemistry of Materials, 19(25), 6240-6246. doi:10.1021/cm702133u

Luo, N., Li, X., Wang, X., Yan, H., Zhang, C., & Wang, H. (2010). Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon, 48(13), 3858-3863. doi:10.1016/j.carbon.2010.06.051

Ma, J., Zhuang, Y., & Yu, F. (2015). Equilibrium, kinetic and thermodynamic adsorption studies of organic pollutants from aqueous solution onto CNT/C@Fe/chitosan composites. New Journal of Chemistry, 39(12), 9299-9305. doi:10.1039/c5nj01876e

Ma, X., Li, L., Yang, L., Su, C., Wang, K., Yuan, S., & Zhou, J. (2012). Adsorption of heavy metal ions using hierarchical CaCO 3-maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. Journal of Hazardous Materials, 209-210, 467-477. doi:10.1016/j.jhazmat.2012.01.054

Machado, F. M., Fagan, S. B., da Silva, I. Z., & de Andrade, M. J. (2015). Carbon nanoadsorbents doi:10.1007/978-3-319-18875-1_2 Retrieved from www.scopus.com

Mahalingam, P., Maiyalagan, T., ManiKandan, E., Syed Shabudeen, P. S., & Karthikeyan, S. (2013). Dynamic and equilibrium studies on the sorption of basic dye (basic brown 4) onto multi-walled carbon nanotubes prepared from renewable carbon precursors. J Environ Nanotechnol, 2, 43. Retrieved from www.scopus.com

Malik, L. A., Bashir, A., Qureashi, A., & Pandith, A. H. (2019). Detection and removal of heavy metal ions: A review. Environmental Chemistry Letters, 17(4), 1495-1521. doi:10.1007/s10311-019-00891-z

Marković, R., Stevanović, J., Stevanović, Z., Bugarin, M., Nedeljković, D., Grajić, A., & Stajić-Trošić, J. (2011). Using the low-cost waste materials for heavy metals removal from the mine wastewater. Materials Transactions, 52(10), 1849-1852. doi:10.2320/matertrans.M2011191

Maryam, M., Suriani, A. B., Shamsudin, M. S., & Rusop, M. (2013). BET analysis on carbon nanotubes: Comparison between single and double stage thermal CVD method doi:10.4028/www.scientific.net/AMR.626.289 Retrieved from www.scopus.com

Miyamoto, J. -., Kanoh, H., & Kaneko, K. (2005). The addition of mesoporosity to activated carbon fibers by a simple reactivation process. Carbon, 43(4), 855-857. doi:10.1016/j.carbon.2004.10.049

Mubarak, N. M., Sahu, J. N., Abdullah, E. C., & Jayakumar, N. S. (2016). Rapid adsorption of toxic pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Journal of Environmental Sciences (China), 45, 143-155. doi:10.1016/j.jes.2015.12.025

Mubarak, N. M., Sahu, J. N., Abdullah, E. C., Jayakumar, N. S., & Ganesan, P. (2015). Novel microwave-assisted multiwall carbon nanotubes enhancing cu (II) adsorption capacity in water. Journal of the Taiwan Institute of Chemical Engineers, 53, 140-152. doi:10.1016/j.jtice.2015.02.016

Nata, I. F., Wicakso, D. R., Mirwan, A., Irawan, C., Ramadhani, D., & Ursulla. (2020). Selective adsorption of pb(II) ion on amine-rich functionalized rice husk magnetic nanoparticle biocomposites in aqueous solution. Journal of Environmental Chemical Engineering, 8(5) doi:10.1016/j.jece.2020.104339

Oliveira, J. A., Cunha, F. A., & Ruotolo, L. A. M. (2019). Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals. Journal of Cleaner Production, 229, 956-963. doi:10.1016/j.jclepro.2019.05.069

Palanivell, P., Ahmed, O. H., Latifah, O., & Majid, N. M. A. (2020). Adsorption and desorption of nitrogen, phosphorus, potassium, and soil buffering capacity following application of chicken litter biochar to an acid soil. Applied Sciences (Switzerland), 10(1) doi:10.3390/app10010295

Pavan Kumar, G. V. S. R., Malla, K. A., Yerra, B., & Srinivasa Rao, K. (2019). Removal of cu(II) using three low-cost adsorbents and prediction of adsorption using artificial neural networks. Applied Water Science, 9(3) doi:10.1007/s13201-019-0924-x

Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39(4), 507-514. doi:10.1016/S0008-6223(00)00155-X

Pyrzyńska, K., & Bystrzejewski, M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362(1-3), 102-109. doi:10.1016/j.colsurfa.2010.03.047

Qu, S., Huang, F., Yu, S., Chen, G., & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials, 160(2-3), 643-647. doi:10.1016/j.jhazmat.2008.03.037

Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2009). Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials, 170(2-3), 969-977. doi:10.1016/j.jhazmat.2009.05.066

Rahman, M. S., & Islam, M. R. (2009). Effects of pH on isotherms modeling for cu(II) ions adsorption using maple wood sawdust. Chemical Engineering Journal, 149(1-3), 273-280. doi:10.1016/j.cej.2008.11.029

Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 58(1), 224-231. doi:10.1016/j.seppur.2006.12.006

Rao, M. M., Ramana, D. K., Seshaiah, K., Wang, M. C., & Chien, S. W. C. (2009). Removal of some metal ions by activated carbon prepared from phaseolus aureus hulls. Journal of Hazardous Materials, 166(2-3), 1006-1013. doi:10.1016/j.jhazmat.2008.12.002

Rodríguez, C., Briano, S., & Leiva, E. (2020). Increased adsorption of heavy metal ions in multi-walled carbon nanotubes with improved dispersion stability. Molecules, 25(14) doi:10.3390/molecules25143106

Sankhla, M. S., Kumari, M., Nandan, M., Kumar, R., & Agrawal, P. (2016). Heavy metals contamination in water and their hazardous effect on human health-a review. International Journal of Current Microbiology and Applied Sciences, 5(10), 759-766. Retrieved from www.scopus.com

Sengupta, J. (2018). Carbon nanotube fabrication at industrial scale: Opportunities and challenges. Handbook of nanomaterials for industrial applications (pp. 172-194) doi:10.1016/B978-0-12-813351-4.00010-9 Retrieved from www.scopus.com

Shamsudin, M. S., Achoi, M. F., Asiah, M. N., Ismail, L. N., Suriani, A. B., Abdullah, S., . . . Rusop, M. (2012). An investigation on the formation of carbon nanotubes by two-stage chemical vapor deposition. Journal of Nanomaterials, 2012 doi:10.1155/2012/972126

Shan, R., Shi, Y., Gu, J., Wang, Y., & Yuan, H. (2020). Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chinese Journal of Chemical Engineering, 28(5), 1375-1383. doi:10.1016/j.cjche.2020.02.012

Siddiqa, A., Shahid, A., & Gill, R. (2015). Silica decorated CNTs sponge for selective removal of toxic contaminants and oil spills from water. Journal of Environmental Chemical Engineering, 3(2), 892-897. doi:10.1016/j.jece.2015.02.026

Sočo, E., & Kalembkiewicz, J. (2015). Removal of copper(II) and zinc(II) ions from aqueous solution by chemical treatment of coal fly ash. Croatica Chemica Acta, 88(3), 267-279. doi:10.5562/cca2646

Sun, W. -., Xia, J., & Shan, Y. -. (2014). Comparison kinetics studies of cu(II) adsorption by multi-walled carbon nanotubes in homo and heterogeneous systems: Effect of nano-SiO2. Chemical Engineering Journal, 250, 119-127. doi:10.1016/j.cej.2014.03.094

Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I. M., Kamari, A., Hashim, N., . . . Rusop, M. (2015). Quasi-aligned carbon nanotubes synthesised from waste engine oil. Materials Letters, 139, 220-223. doi:10.1016/j.matlet.2014.10.046

Suriani, A. B., Azira, A. A., Nik, S. F., Md Nor, R., & Rusop, M. (2009). Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Materials Letters, 63(30), 2704-2706. doi:10.1016/j.matlet.2009.09.048

Suriani, A. B., Dalila, A. R., Mohamed, A., Mamat, M. H., Salina, M., Rosmi, M. S., . . . Rusop, M. (2013). Vertically aligned carbon nanotubes synthesized from waste chicken fat. Materials Letters, 101, 61-64. doi:10.1016/j.matlet.2013.03.075

Suriani, A. B., Dalila, A. R., Mohamed, A., Soga, T., & Tanemura, M. (2015). Synthesis, structural, and field electron emission properties of quasi-aligned carbon nanotubes from gutter oil. Materials Chemistry and Physics, 165, 1-7. doi:10.1016/j.matchemphys.2015.09.002

Suriani, A. B., Md Nor, R., & Rusop, M. (2010). Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. Journal of the Ceramic Society of Japan, 118(1382), 963-968. doi:10.2109/jcersj2.118.963


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)