UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science
ISSN :17426588
Main Author :Moatasem Alsalih
Additional Authors :Syakirah Samsudin
Title :Cellular total lipid peroxidation, and glutathione S transferase levels in larvae and pupae of aedes aegypti with catalysts preparation of Mg-doped tio2Nanoparticles
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Physics: Conference Series
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
Aim: synthesis, characterization, and application of modifying nanocomposite TiO2 doped with Magnesium for photodegradation of antioxidant system Larvae and Pupae of Aedes Aegypti Catalysts Preparation of Mg-doped TiO2 to determine activity of oxidative stress (MDA) and glutathione S Transferase, were known as a parameter of defense system resistance and immune maintained. This study was undertaken to assess the potential role of growth of stages of Aedes Aegypti correspondence with oxidant and antioxidant balance triggered by nanoparticle exposure. The amounts of these parameters in cellular samples were investigated using the following materials and procedures, intake 100 larvae and 100 pupae as subjects with (study subjects) and 3-9 days' age-matched with healthy subjects as controls. at the second of the admission, as a marker of lipid peroxidation, and therefore an indicator of the activity of standard free radicals Nanoparticles Photo Catalysts, TiO2 doped with Mg, the standard prepared Nanopowder changes from the forbidden band TiO2 standard doping with atoms of Mg Mg) using the sol-gel method, for Mg-doped TiO2 nanoparticles, the estimated band gap energy is 2.92 eV. Tissue MDA was used to estimate thiobarbituric acid reactive substances (TBARS), and liquid glutathione reductase activity was assessed using Goldberg DM's method. Results: When compared to controls, there was a dramatic rise in MDA content and glutathione s transferase efficiency in larvae and pupae populations exposed to photo catalyst modified nanoparticles. Conclusion: Increased MDA support to oxidative stress in larvae and pupae samples supports enhanced oxygen-free radical generation, as indicated by our findings. Increased antioxidant enzyme activity could be a compensatory mechanism in response to increased oxidative stress. The findings point to glutathione s transferase's antioxidant activity in response to increasing oxidative stress in the treated group. ? Published under licence by IOP Publishing Ltd.

References

Al-Salih, M., Samsudin, S., & Rashid, A. (2020). Evaluation of cellular oxidative stress levels in aedes aegypti mosquitoes as a reaction of photocatalyst modify nanoparticles exposure. Eurasian Journal of Biosciences, 14, 3607-3616. Retrieved from www.scopus.com

Al-Salih, M., Samsudin, S., & Rashid, A. (2020). Evaluation of cellular oxidative stress levels in aedes aegypti mosquitoes as a reaction of photocatalyst modify nanoparticles exposure. Eurasian Journal of Biosciences, 14, 3607-3616. Retrieved from www.scopus.com

Aono, M., & Ariga, K. (2016). The way to nanoarchitectonics and the way of nanoarchitectonics. Advanced Materials, 28(6), 989-992. doi:10.1002/adma.201502868

Au–Pree, S., Narakaew, P., Thungprasert, S., Promanan, T., Chaisena, A., & Narakaew, S. (2021). Enhanced photocatalytic activity of c-doped tio2 under visible light irradiation: A comparison of corn starch, honey, and polyethylene glycol as a carbon sources. Engineering Journal, 25(1), 53-68. doi:10.4186/ej.2021.25.1.53

Bautista, N. M., & Burggren, W. W. (2019). Parental stressor exposure simultaneously conveys both adaptive and maladaptive larval phenotypes through epigenetic inheritance in the zebrafish (danio rerio). Journal of Experimental Biology, 222(17) doi:10.1242/jeb.208918

Behnajady, M. A., Alizade, B., & Modirshahla, N. (2011). Synthesis of mg-doped TiO 2 nanoparticles under different conditions and its photocatalytic activity. Photochemistry and Photobiology, 87(6), 1308-1314. doi:10.1111/j.1751-1097.2011.01002.x

Blinova, I., Muna, M., Heinlaan, M., Lukjanova, A., & Kahru, A. (2020). Potential hazard of lanthanides and lanthanide-based nanoparticles to aquatic ecosystems: Data gaps, challenges and future research needs derived from bibliometric analysis. Nanomaterials, 10(2) doi:10.3390/nano10020328

Borovsky, D., & Meola, S. M. (2004). Biochemical and cytoimmunological evidence for the control of aedes aegypti larval trypsin with aea-TMOF. Archives of Insect Biochemistry and Physiology, 55(3), 124-139. doi:10.1002/arch.10132

Bradley, C. A., & Altizer, S. (2007). Urbanization and the ecology of wildlife diseases. Trends in Ecology and Evolution, 22(2), 95-102. doi:10.1016/j.tree.2006.11.001

Brady, O. J., & Hay, S. I. (2020). The global expansion of dengue: How aedes aegypti mosquitoes enabled the first pandemic arbovirus doi:10.1146/annurev-ento-011019-024918 Retrieved from www.scopus.com

Brady, O., Golding, N., Pigott, D., Kraemer, M., Messina, J., Reiner, R., . . . Hay, S. (2014). Global temperature constraints on aedes aegypti and ae. Albopictus Persistence and Competence for Dengue Virus Transmission Parasites & Vectors, Retrieved from www.scopus.com

Brian, M. V. (1983). Social Insects, Ecology and Behavioral Biology, Retrieved from www.scopus.com

Carvalho, D. O., Nimmo, D., Naish, N., McKemey, A. R., Gray, P., Wilke, A. B. B., . . . Capurro, M. L. (2014). Mass production of genetically modified aedes aegypti for field releases in brazil. Journal of Visualized Experiments, (83) doi:10.3791/3579

Castillo, J., Naranjo, J., Rojas, M., Castaño, D., & Velilla, P. (2019). Role of Monocytes in the Pathogenesis of Dengue Archivum Immunologiae Et Therapiae Experimentalis, Retrieved from www.scopus.com

Chen, E. -., Hou, Q. -., Wei, D. -., Jiang, H. -., & Wang, J. -. (2017). Phenotypes, antioxidant responses, and gene expression changes accompanying a sugar-only diet in bactrocera dorsalis (hendel) (diptera: Tephritidae). BMC Evolutionary Biology, 17(1) doi:10.1186/s12862-017-1045-5

Christophers, S. R. (1960). Aedes Aegypti.the Yellow Fever Mosquito: Its Life History, Bionomics, and Structure, Retrieved from www.scopus.com

City, B. L., & Assessment, E. (2010). Urbanization and health. Bulletin of the World Health Organization, 88(4), 245-246. Retrieved from www.scopus.com

Dabour, K., Al Naggar, Y., Masry, S., Naiem, E., & Giesy, J. P. (2019). Cellular alterations in midgut cells of honey bee workers (apis millefera L.) exposed to sublethal concentrations of CdO or PbO nanoparticles or their binary mixture. Science of the Total Environment, 651, 1356-1367. doi:10.1016/j.scitotenv.2018.09.311

de Souza Gomes, R., Navegantes-Lima, K., Monteiro, V., de Brito Oliveira, A., Rodrigues, D., Reis, J., . . . Estrada, J. (2018). Salivary Gland Extract from Aedes Aegypti Improves Survival in Murine Polymicrobial Sepsis through Oxidative Mechanisms Cells, 7, 182. Retrieved from www.scopus.com

Deepak, K. (2016). Investigating the Functional Role of Tick Antioxidants in Hematophagy and Vector Competence, Retrieved from www.scopus.com

Dhimal, M., Gautam, I., Joshi, H. D., O’Hara, R. B., Ahrens, B., & Kuch, U. (2015). Risk factors for the presence of chikungunya and dengue vectors (aedes aegypti and aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central nepal. PLoS Neglected Tropical Diseases, 9(3) doi:10.1371/journal.pntd.0003545

Ferdenache, M., Bezzar-Bendjazia, R., Marion-Poll, F., & Kilani-Morakchi, S. (2019). Transgenerational Effects from Single Larval Exposure to Azadirachtin on Life History and Behavioral Traits of Drosophila Melanogaster Scientific Reports, Retrieved from www.scopus.com

Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Jon Dokken, D., Ebi, K. L., . . . Midgley, P. M. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change (pp. 1-582) doi:10.1017/CBO9781139177245 Retrieved from www.scopus.com

Flora, S. J. S. (2009). Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Medicine and Cellular Longevity, 2(4), 191-206. doi:10.4161/oxim.2.4.9112

Franco, F. C., Alves, A. A., Godoy, F. R., Avelar, J. B., Rodrigues, D. D., Pedroso, T. M. A., . . . de Melo e Silva, D. (2016). Evaluating genotoxic risks in brazilian public health agents occupationally exposed to pesticides: A multi-biomarker approach. Environmental Science and Pollution Research, 23(19), 19723-19734. doi:10.1007/s11356-016-7179-y

Giahi, M., Pathania, D., Agarwal, S., Ali, G. A. M., Chonge, K. F., & Gupta, V. K. (2019). Preparation of mg-doped TiO 2 nanoparticles for photocatalytic degradation of some organic pollutants. Studia Universitatis Babes-Bolyai Chemia, 64(1), 7-18. doi:10.24193/subbchem.2019.1.01

Gulachenski, A., Ghersi, B., Lesen, A., & Blum, M. (2016). Abandonment, Ecological Assembly and Public Health Risks in Counter-Urbanizing Cities Sustainability, 8, 491. Retrieved from www.scopus.com

Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nature Reviews Microbiology, 11(7), 443-454. doi:10.1038/nrmicro3032

Khanizadeh, B., Khosravi, M., Behnajady, M. A., Shamel, A., & Vahid, B. (2020). Mg and la co-doped ZnO nanoparticles prepared by sol– gel method: Synthesis, characterization and photocatalytic activity. Periodica Polytechnica Chemical Engineering, 64(1), 61-74. doi:10.3311/PPch.12959

Khater, H. F., Selim, A. M., Abouelella, G. A., Abouelella, N. A., Murugan, K., Vaz, N. P., & Govindarajan, M. (2019). Commercial mosquito repellents and their safety concerns. Malaria, Retrieved from www.scopus.com

Kostova, I., Bhatia, S., Grigorov, P., Balkansky, S., Parmar, V. S., Prasad, A. K., & Saso, L. (2011). Coumarins as antioxidants. Current Medicinal Chemistry, 18(25), 3929-3951. doi:10.2174/092986711803414395

Koul, O. (2019). Nano-biopesticides today and future perspectives. Nano-biopesticides today and future perspectives (pp. 1-485) doi:10.1016/C2017-0-03028-8 Retrieved from www.scopus.com

Leisnham, P. T., Sala, L. M., & Juliano, S. A. (2008). Geographic variation in adult survival and reproductive tactics of the mosquito aedes albopictus. Journal of Medical Entomology, 45(2), 210-221. doi:10.1603/0022-2585(2008)45[210:GVIASA]2.0.CO;2

Liepaja, B., & Rajini, P. (2013). Biochemical and physiological responses in caenorhabditis elegans exposed to sublethal concentrations of the organophosphorus insecticide. Monocrotophos Ecotoxicology and Environmental Safety, Retrieved from www.scopus.com

Louis, V. L., Phalkey, R., Waroux, O. L. P. D., Wind, T., Komproe, I., & Luotomo, M. (2008). The health and health care system impacts of earthquakes, windstorms and floods–a systematic review. The Health and Health Care System Impacts of Earthquakes, Windstorms and Floods, Retrieved from www.scopus.com

Mahmood, F. (2014). Laboratory maintenance of mosquitoes. Retrieved from www.scopus.com

Matthews, J., McBride, C., DeGennaro, M., Despo, O., & Vosshall, L. (2016). The Neurotranscriptome of the Aedes Aegypti Mosquito BMC Genomics, Retrieved from www.scopus.com

Messina, J. P., Brady, O. J., Golding, N., Kraemer, M. U. G., Wint, G. R. W., Ray, S. E., . . . Hay, S. I. (2019). The current and future global distribution and population at risk of dengue. Nature Microbiology, 4(9), 1508-1515. doi:10.1038/s41564-019-0476-8

Miditana, S. R., Tirukkovalluri, S. R., Raju, I. M., Alim, S. A., Jaishree, G., & Chippada, M. L. V. P. (2021). Gemini surfactant assisted synthesis of mesoporous Mn/Mg bimetal doped TiO2 nanomaterial: Characterization and photocatalytic activity studies under visible light irradiation. Sustainable Environment Research, 31(1) doi:10.1186/s42834-021-00078-8

Müller, C. (2018). Impacts of sublethal insecticide exposure on insects — facts and knowledge gaps. Basic and Applied Ecology, 30, 1-10. doi:10.1016/j.baae.2018.05.001

Murugan, K., Roni, M., Panneerselvam, C., Aziz, A. T., Suresh, U., Rajaganesh, R., . . . Benelli, G. (2018). Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector anopheles stephensi and cotton bollworm helicoverpa armigera. Physiological and Molecular Plant Pathology, 101, 202-213. doi:10.1016/j.pmpp.2017.02.004

Paital, B., Panda, S. K., Hati, A. K., Mohanty, B., Mohapatra, M. K., Kanungo, S., & Chainy, G. B. N. (2016). Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J.Biol.Chem., 7(1), 110-127. Retrieved from www.scopus.com

Pereira, C. V., Nadanaciva, S., Oliveira, P. J., & Will, Y. (2012). The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo. Expert Opinion on Drug Metabolism and Toxicology, 8(2), 219-237. doi:10.1517/17425255.2012.645536

Rai, P. K., Kumar, V., Lee, S., Raza, N., Kim, K. -., Ok, Y. S., & Tsang, D. C. W. (2018). Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment International, 119, 1-19. doi:10.1016/j.envint.2018.06.012

Ramandi, S., Entezari, M. H., & Ghows, N. (2017). Sono-synthesis of solar light responsive S–N–C–tri doped TiO2 photo-catalyst under optimized conditions for degradation and mineralization of diclofenac. Ultrasonics Sonochemistry, 38, 234-245. doi:10.1016/j.ultsonch.2017.03.008

Rani, M., & Shanker, U. (0000). , 11-61. Retrieved from www.scopus.com

Rani, M., & Shanker, U. (2020). Green photocatalytic synthesis activity of TiO2 and its handbook of smart photocatalytic materials: Fundamentals. Fabrications, and Water Resources Applications, Retrieved from www.scopus.com

Rebechi, D., Palacio-Cortés, A. M., Richardi, V. S., Beltrão, T., Vicentini, M., Grassi, M. T., . . . Navarro-Silva, M. A. (2021). Molecular and biochemical evaluation of effects of malathion, phenanthrene and cadmium on chironomus sancticaroli (diptera: Chironomidae) larvae. Ecotoxicology and Environmental Safety, 211 doi:10.1016/j.ecoenv.2021.111953

Reinhold, J. M., Lazzari, C. R., & Lahondère, C. (2018). Effects of the environmental temperature on aedes aegypti and aedes albopictus mosquitoes: A review. Insects, 9(4) doi:10.3390/insects9040158

Rivera-Ingraham, G. A., & Lignot, J. -. (2017). Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. Journal of Experimental Biology, 220(10), 1749-1760. doi:10.1242/jeb.135624

Singh, E., Osmani, R. A. M., & Banerjee, R. (2020). Nanobioremediation: An emerging approach for a cleaner environment. Microbial bioremediation & biodegradation (pp. 309-363) doi:10.1007/978-981-15-1812-6_12 Retrieved from www.scopus.com

Sudo, M., Takahashi, D., Andow, D. A., Suzuki, Y., & Yamanaka, T. (2018). Optimal management strategy of insecticide resistance under various insect life histories: Heterogeneous timing of selection and interpatch dispersal. Evolutionary Applications, 11(2), 271-283. doi:10.1111/eva.12550

Watts, N., Adger, W. N., Agnolucci, P., Blackstock, J., Byass, P., Cai, W., . . . Costello, A. (2015). Health and climate change: Policy responses to protect public health. The Lancet, 386(10006), 1861-1914. doi:10.1016/S0140-6736(15)60854-6

Wei, F., Wang, D., Li, H., Xia, P., Ran, Y., & You, J. (2020). Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect. Chironomus Dilutes Environmental Pollution, , 260114011. Retrieved from www.scopus.com

Wong, G. K. L., & Jim, C. Y. (2017). Urban-microclimate effect on vector mosquito abundance of tropical green roofs. Building and Environment, 112, 63-76. doi:10.1016/j.buildenv.2016.11.028

Yang, G., Yan, Z., & Xiao, T. (2012). Preparation and characterization of SnO 2 /ZnO/TiO 2 composite semiconductor with enhanced photocatalytic activity. Applied Surface Science, 258(22), 8704-8712. doi:10.1016/j.apsusc.2012.05.078

Zhang, J., Ahmad, S., Wang, L. -., Han, Q., Zhang, J. -., & Luo, Y. -. (2019). Cell death induced by α-terthienyl via reactive oxygen species-mediated mitochondrial dysfunction and oxidative stress in the midgut of aedes aegypti larvae. Free Radical Biology and Medicine, 137, 87-98. doi:10.1016/j.freeradbiomed.2019.04.021


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)