UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Traffic flow is a continuous phenomenon. The irregular patterns in the traffic flow data show the complexity of the system under a variety of internal and external factors restrict and influence. The possibility of making short range forecasting of traffic flow using chaos approach is by investigating the presence of chaotic behaviour. Traffic flow data of four stations located in Selangor, Malaysia were analysed. There were three methods employed in this analysis; (1) phase space plot, (2) Cao method and (3) Lyapunov exponent. The phase space plot can be constructed by phase space. There were two parameters needed in phase space reconstructed; (1) time delay, ? that is calculated by using average mutual information (AMI) and (2) embedding dimension, m that is obtained from Cao method. The traffic flow data were analysed to reveal the existence of chaotic behaviour. Therefore, short range forecasting of traffic flow using chaos approach can be applied to show the suitability of chaos approach to forecast the traffic flow time series data in Malaysia. ? 2021. All rights reserved. |
References |
Abarbanel, H. D. I. (1996). Analysis of Observed Chaotic Data, Retrieved from www.scopus.com Abd Hamid, N. Z. (2018). Application of chaotic approach in forecasting highland's temperature time series. Paper presented at the IOP Conference Series: Earth and Environmental Science, , 169(1) doi:10.1088/1755-1315/169/1/012107 Retrieved from www.scopus.com Adenan, N. H., & Noorani, M. S. M. (2016). Multiple time-scales nonlinear prediction of river flow using chaos approach. Jurnal Teknologi, 78(7), 1-7. doi:10.11113/jt.v78.3561 Albostan, A., & Önöz, B. (2015). Implementation of chaotic analysis on river discharge time series. Energy Power Eng, 7(3), 81-92. Retrieved from www.scopus.com Cheng, A., Jiang, X., Li, Y., Zhang, C., & Zhu, H. (2017). Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method. Physica A: Statistical Mechanics and its Applications, 466, 422-434. doi:10.1016/j.physa.2016.09.041 Fragkou, A. D., Karakasidis, T. E., & Nathanail, E. (2018). Detection of traffic incidents using nonlinear time series analysis. Chaos, 28(6) doi:10.1063/1.5024924 Frazier, C., & Kockelman, K. M. (2004). Chaos theory and transportation systems: Instructive example doi:10.3141/1897-02 Retrieved from www.scopus.com Hamid, N. Z. A., Adenan, N. H., & Noorani, M. S. M. (2017). Forecasting and analyzing high O3 time series in educational area through an improved chaotic approach. Paper presented at the AIP Conference Proceedings, , 1870 doi:10.1063/1.4995867 Retrieved from www.scopus.com Hilborn, R. C. (1994). Chaos and Nonlinear Dynamics, Retrieved from www.scopus.com Kumar, K., Parida, M., & Katiyar, V. K. (2013). Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia-Social and Behavioral Sciences, 104, 755-764. Retrieved from www.scopus.com Lan, L. W., Lin, F. Y., & Kuo, A. Y. (2003). Testing and prediction of traffic flow dynamics with chaos. Journal of the Eastern Asia Society for Transportation Studies, 5, 1975-1990. Retrieved from www.scopus.com Lorenz, E. N., & Hilborn, R. C. (1995). The essence of chaos. Phys.Today, 63(48), 862-863. Retrieved from www.scopus.com Peng, D., Xin, F., Zhang, L., Gao, Z., Zhang, W., Wang, Y., . . . Wang, Y. (2017). Nonlinear time-series analysis of optical signals to identify multiphase flow behavior in microchannels. AIChE Journal, 63(6), 2378-2385. doi:10.1002/aic.15584 Priambodo, B., & Ahmad, A. (2018). Traffic flow prediction model based on neighbouring roads using neural network and multiple regression. Journal of Information and Communication Technology, 17(4), 513-535. Retrieved from www.scopus.com Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1-2), 117-134. doi:10.1016/0167-2789(93)90009-P Safonov, L. A., Tomer, E., Strygin, V. V., Ashkenazy, Y., & Havlin, S. (2002). Delay-induced chaos with multifractal attractor in a traffic flow model. Europhysics Letters, 57(2), 151-157. doi:10.1209/epl/i2002-00555-0 Shang, P., Li, X., & Kamae, S. (2005). Chaotic analysis of traffic time series. Chaos, Solitons and Fractals, 25(1), 121-128. doi:10.1016/j.chaos.2004.09.104 Shang, P., Na, X., & Kamae, S. (2009). Chaotic analysis of time series in the sediment transport phenomenon. Chaos, Solitons and Fractals, 41(1), 368-379. doi:10.1016/j.chaos.2008.01.014 Sivakumar, B. (2002). A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology, 258(1-4), 149-162. doi:10.1016/S0022-1694(01)00573-X Vlad, S. (2010). Investigation of chaotic behavior in euro-leu exchange rate. Journal of Applied Computer Science and Mathematics, 8(4), 67-71. Retrieved from www.scopus.com Vlahogianni, E. I., Golias, J. C., & Karlaftis, M. G. (2004). Short‐term traffic forecasting: Overview of objectives and methods. Transport Reviews, 24(5), 533-557. doi:10.1080/0144164042000195072 Xie, J., & Choi, Y. -. (2017). Hybrid traffic prediction scheme for intelligent transportation systems based on historical and real-time data. International Journal of Distributed Sensor Networks, 13(11) doi:10.1177/1550147717745009 Xue, J. -., & Shi, Z. -. (2008). Short-time traffic flow prediction using chaos time series theory. Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/ Journal of Transportation Systems Engineering and Information Technology, 8(5), 68-72. Retrieved from www.scopus.com Zaim, W. N. A. B. W. M., & Hamid, N. Z. A. (2017). Forecasting ozone pollutant (o3) in universiti pendidikan sultan idris, tanjung malim, perak, malaysia based on monsoon using chaotic approach. [Peramalan Bahan Pencemar Ozon (O3) di Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia Mengikut Monsun dengan Menggunakan Pendekatan Kalut] Sains Malaysiana, 46(12), 2523-2528. doi:10.17576/jsm-2017-4612-30 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |