UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Pineapple (Ananas comosus) is one of the tropical fruits that is cultivated in Malaysia for export as well as domestic use. Unfortunately, the production is heavily affected by the red tip disease which was detected in the southern part of Malaysia 3 decades ago. Despite the identification of this disease, causal agent receives less attention from researchers. Nevertheless, symptoms associated with this infection and the mode of transference inside the plantations indicate viral-like disease. RNA extracted from the pineapple infected leaves introduced to Nicotiana tabacum cv. Coker by kneading the plant leaves to extract fresh sap. Yellowish necrosis was detected three weeks after artificial inoculation. The staining of the fresh diseased sample and inoculated Nicotiana tabacum cv. Coker showed the existence of round particles with an average diameter of 94.25nm under the transmission electron microscope. SDS-PAGE analysis revealed proteins bands similar to those of tospovirus at 25, 55 and 128 kDa. Further protein identification and validation suggested for molecular confirmation of the disease causative agent. ? 2021 World Research Association. All rights reserved. |
References |
Altendorf, S. (2017). Global prospects for major tropical fruits. short-term outlook, challenges and opportunities in a vibrant global marketplace. food. Global Prospects for Major Tropical Fruits: Short-Term Outlook, Challenges and Opportunities in a Vibrant Global Marketplace, , 69-81. Retrieved from www.scopus.com Alwabli, A. S., Khattab, E. A. H., & Farag, A. G. (2017). Biological, serological and molecular characterization of papper MildMottle virus isolated from weast region of kingdom of saudi arabia. Research Journal of Infectious Diseases, 5, 1. Retrieved from www.scopus.com Badillo-Vargas, I. E., Chen, Y., Martin, K. M., Rotenberg, D., & Whitfield, A. E. (2019). Discovery of novel thRIPS vector proteins that bind to the viral attachment protein of the plant bunyavirus tomato spotted wilt virus. Journal of Virology, 93(21) doi:10.1128/JVI.00699-19 Balasundram, S. K., Kassim, F. A., Vadamalai, G., & Hanif, A. H. M. (2013). Estimation of red tip disease severity in pineapple using a non-contact sensor approach. Agricultural Sciences, 4(4), 206-208. Retrieved from www.scopus.com Berniak, H. (2016). Characterization of a new tomato spotted wilt virus isolates found in hippeastrum hybridum (hort.) plants in poland. Journal of Horticultural Research, 24(1), 5-12. doi:10.1515/johr-2016-0001 Brewer, H. C., Hird, D. L., Bailey, A. M., Seal, S. E., & Foster, G. D. (2018). A guide to the contained use of plant virus infectious clones. Plant Biotechnology Journal, 16(4), 832-843. doi:10.1111/pbi.12876 Çağlayan, K., Roumi, V., Gazel, M., Elçi, E., Acioğlu, M., Plesko, I. M., . . . Massart, S. (2019). Identification and characterization of a novel robigovirus species from sweet cherry in turkey. Pathogens, 8(2) doi:10.3390/pathogens8020057 Chen, G., Su, Q., Shi, X., Pan, H., Jiao, X., & Zhang, Y. (2018). Persistently transmitted viruses restrict the transmission of other viruses by affecting their vectors. Frontiers in Physiology, 9(OCT) doi:10.3389/fphys.2018.01261 Chitturi, A., Conner, K., Sikora, E. J., & Jacobson, A. L. (2018). Monitoring seasonal distribution of thrips vectors of soybean vein necrosis virus in alabama soybeans. Journal of Economic Entomology, 111(6), 2562-2569. doi:10.1093/jee/toy237 de Ronde, D., Lohuis, D., & Kormelink, R. (2019). Identification and characterization of a new class of tomato spotted wilt virus isolates that break tsw-based resistance in a temperature-dependent manner. Plant Pathology, 68(1), 60-71. doi:10.1111/ppa.12952 Delić, D., Balech, B., Radulović, M., Đurić, Z., Lolić, B., Santamaria, M., & Đurić, G. (2018). Molecular identification of tomato spotted wilt virus on pepper and tobacco in republic of srpska (bosnia and herzegovina). European Journal of Plant Pathology, 150(3), 785-789. doi:10.1007/s10658-017-1313-7 Dijkstra, J., & De Jager, C. P. (1998). Practical plant virology. Practical Plant Virology: Protocols and Exercises, Retrieved from www.scopus.com Eyvazi, A., Dizadji, A., Rastgou, M., & Koohi Habibi, M. (2015). Bioassay and phylogeny of five iranian isolates of cucumber mosaic virus from different hosts based on CP gene sequence. Plant Protection Science, 51(4), 200-207. doi:10.17221/80/2014-PPS Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537-561. doi:10.3390/bios5030537 FAOSTAT. (2017). Food and agriculture organization of the united nations. Food and Agriculture Organization of the United Nations, Retrieved from www.scopus.com Gelderblom, H. R., & Madeley, D. (2018). Rapid viral diagnosis of orthopoxviruses by electron microscopy: Optional or a must? Viruses, 10(4) doi:10.3390/v10040142 Golnaraghi, A., Shahraeen, N., & Nguyen, H. D. (2018). Characterization and genetic structure of a tospovirus causing chlorotic ring spots and chlorosis disease on peanut; comparison with iranian and polish populations of tomato yellow fruit ring virus. Plant Disease, 102(8), 1509-1519. doi:10.1094/PDIS-10-17-1686-RE Gronenborn, B., Randles, J. W., Knierim, D., Barrière, Q., Vetten, H. J., Warthmann, N., . . . Timchenko, T. (2018). Analysis of DNAs associated with coconut foliar decay disease implicates a unique single-stranded DNA virus representing a new taxon. Scientific Reports, 8(1) doi:10.1038/s41598-018-23739-y Holkar, S. K., Kumar, R., Yogita, M., Katiyar, A., Jain, R. K., & Mandal, B. (2017). Diagnostic assays for two closely related tospovirus species, watermelon bud necrosis virus and groundnut bud necrosis virus and identification of new natural hosts. Journal of Plant Biochemistry and Biotechnology, 26(1), 43-51. doi:10.1007/s13562-016-0358-6 Hommel, A. (2020). Global Market Update: Pineapple, Market Analysis, Retrieved from www.scopus.com Hong, J. -., & Ju, H. -. (2017). The plant cellular systems for plant virus movement. Plant Pathology Journal, 33(3), 213-228. doi:10.5423/PPJ.RW.09.2016.0198 Huang, C., Liu, Y., Yu, H., Yuan, C., Zeng, J., Zhao, L., . . . Tao, X. (2018). Non-structural protein NSm of tomato spotted wilt virus is an avirulence factor recognized by resistance genes of tobacco and tomato via different elicitor active sites. Viruses, 10(11) doi:10.3390/v10110660 Hull, R. (2002). Mathews’ plant virology. Mathew's Plant Virology, Retrieved from www.scopus.com Ishibashi, K., Matsumoto-Yokoyama, E., & Ishikawa, M. (2017). A tomato spotted wilt virus S RNA-based replicon system in yeast. Scientific Reports, 7(1) doi:10.1038/s41598-017-12687-8 Jeong, J. -., Ju, H. -., & Noh, J. (2014). A review of detection methods for the plant viruses. Res.Plant Dis., 20(3), 173-181. Retrieved from www.scopus.com Jeżewska, M., Trzmiel, K., & Zarzyńska-Nowak, A. (2019). Detection of infectious brome mosaic virus in irrigation ditches and draining strands in poland. European Journal of Plant Pathology, 153(1), 285-292. doi:10.1007/s10658-018-1531-7 Karavina, C., & Gubba, A. (2017). An african perspective on tospoviruses. Journal of Plant Pathology, 99(1), 5-16. doi:10.4454/jpp.v99i1.3814 Kikkert, M., Van Lent, J., Storms, M., Bodegom, P., Kormelink, R., & Goldbach, R. (1999). Tomato spotted wilt virus particle morphogenesis in plant cells. Journal of Virology, 73(3), 2288-2297. doi:10.1128/jvi.73.3.2288-2297.1999 Komoda, K., Ishibashi, K., Kawamura-Nagaya, K., & Ishikawa, M. (2014). Possible involvement of eEF1A in tomato spotted wilt virus RNA synthesis. Virology, 468-470, 81-87. doi:10.1016/j.virol.2014.07.053 Legrand, P. (2015). Biological assays for plant viruses and other graft-transmissible pathogens diagnoses: A review. EPPO Bulletin, 45(2), 240-251. doi:10.1111/epp.12222 Li, J., Feng, Z., Wu, J., Huang, Y., Lu, G., Zhu, M., . . . Tao, X. (2015). Structure and function analysis of nucleocapsid protein of tomato spotted wilt virus interacting with RNA using homology modeling. Journal of Biological Chemistry, 290(7), 3950-3961. doi:10.1074/jbc.M114.604678 Lokesh, B., Rashmi, P. R., Amruta, B. S., Srisathiyanarayanan, D., Murthy, M. R. N., & Savithri, H. S. (2010). NSs encoded by groundnut bud necrosis virus is a bifunctional enzyme. PLoS ONE, 5(3) doi:10.1371/journal.pone.0009757 Maliogka, V. I., Minafra, A., Saldarelli, P., Ruiz-García, A. B., Glasa, M., Katis, N., & Olmos, A. (2018). Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses, 10(8) doi:10.3390/v10080436 Mandal, B., Jain, R. K., Krishnareddy, M., Krishna Kumar, N. K., Ravi, K. S., & Pappu, H. R. (2012). Emerging problems of tospoviruses (bunyaviridae) and their management in the indian subcontinent. Plant Disease, 96(4), 468-479. doi:10.1094/PDIS-06-11-0520 Mandal, B., Pappu, H. R., & Culbreath, A. K. (2001). Factors affecting mechanical transmission of tomato spotted wilt virus to peanut (arachis hypogaea). Plant Disease, 85(12), 1259-1263. doi:10.1094/PDIS.2001.85.12.1259 Margaria, P., Bosco, L., Vallino, M., Ciuffo, M., Mautino, G. C., Tavella, L., & Turina, M. (2014). The nss protein of tomato spotted wilt virus is required for persistent infection and transmission by frankliniella occidentalis. Journal of Virology, 88(10), 5788-5802. doi:10.1128/JVI.00079-14 Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2014). Evidence of local adaptation in plant virus effects on host-vector interactions. Integrative and Comparative Biology, 54(2), 193-209. doi:10.1093/icb/icu012 McGovern, R. J., & Elmer, W. H. (2018). Handbook of Florists’ Crops Diseases, Retrieved from www.scopus.com Mitter, N., Koundal, V., Williams, S., & Pappu, H. (2013). Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS ONE, 8(10) doi:10.1371/journal.pone.0076276 Mohd-Yusuf, Y. (2019). Standardized Bioassays: An Improved Method for Studying Fusarium Oxysporum f.Sp.Cubense Race 4 (FocR4) Pathogen Stress Response in Musa Acuminata Cv.'Berangan, Retrieved from www.scopus.com Montero-Astúa, M., Rotenberg, D., Leach-Kieffaber, A., Schneweis, B. A., Park, S., Park, J. K., . . . Whitfield, A. E. (2014). Disruption of vector transmission by a plant-expressed viral glycoprotein. Molecular Plant-Microbe Interactions, 27(3), 296-304. doi:10.1094/MPMI-09-13-0287-FI Navarro, J. A., Sanchez-Navarro, J. A., & Pallas, V. (2019). Key checkpoints in the movement of plant viruses through the host doi:10.1016/bs.aivir.2019.05.001 Retrieved from www.scopus.com Niu, Y., Wang, D., Cui, L., Wang, B., Pang, X., & Yu, P. (2018). Monoclonal antibody-based colloid gold immunochromatographic strip for the rapid detection of tomato zonate spot tospovirus. Virology Journal, 15(1) doi:10.1186/s12985-018-0919-5 Olmos, A., Boonham, N., Candresse, T., Gentit, P., Giovani, B., Kutnjak, D., . . . Massart, S. (2018). High-throughput sequencing technologies for plant pest diagnosis: Challenges and opportunities. EPPO Bulletin, 48(2), 219-224. doi:10.1111/epp.12472 Popov, V. L., Tesh, R. B., Weaver, S. C., & Vasilakis, N. (2019). Electron microscopy in discovery of novel and emerging viruses from the collection of the world reference center for emerging viruses and arboviruses (WRCEVA). Viruses, 11(5) doi:10.3390/v11050477 Roenhorst, J. W., Botermans, M., & Verhoeven, J. T. J. (2013). Quality control in bioassays used in screening for plant viruses. EPPO Bulletin, 43(2), 244-249. doi:10.1111/epp.12034 Scarff, C. A., Fuller, M. J. G., Thompson, R. F., & Iadaza, M. G. (2018). Variations on negative stain electron microscopy methods: Tools for tackling challenging systems. Journal of Visualized Experiments, 2018(132) doi:10.3791/57199 Sharma, A., & Kulshrestha, S. (2016). Molecular characterization of tospoviruses associated with ringspot disease in bell pepper from different districts of himachal pradesh. VirusDisease, 27(2), 188-192. doi:10.1007/s13337-016-0315-y Singh, P., Indi, S. S., & Savithri, H. S. (2014). Groundnut bud necrosis virus encoded NSm associates with membranes via its C-terminal domain. PLoS ONE, 9(6) doi:10.1371/journal.pone.0099370 Sivaprasad, Y., Garrido, P., Mendez, K., Pachacama, S., Garrido, A., & Ramos, L. (2018). First report of tomato spotted wilt virus infecting chrysanthemum in ecuador. Journal of Plant Pathology, 100(1), 113. doi:10.1007/s42161-018-0010-5 Van Knippenberg, I., Goldbach, R., & Kormelink, R. (2002). Purified tomato spotted wilt virus particles support both genome replication and transcription in vitro. Virology, 303(2), 278-286. doi:10.1006/viro.2002.1632 Verhoeven, J. T. J., & Roenhorst, J. W. (2000). Herbaceous test plants for the detection of quarantine viruses of potato. EPPO Bulletin, 30(3-4), 463-467. doi:10.1111/j.1365-2338.2000.tb00930.x Vijayan, V., López-González, S., Sánchez, F., Ponz, F., & Pagán, I. (2017). Virulence evolution of a sterilizing plant virus: Tuning multiplication and resource exploitation. Virus Evolution, 3(2) doi:10.1093/ve/vex033 Yoon, J. Y., Choi, G. S., Kwon, S. J., & Cho, I. S. (2019). First report of tomato spotted wilt virus infecting peperomia obtusifolia in south korea. Plant Disease, 103(3), 593. doi:10.1094/PDIS-07-18-1209-PDN Zhang, Z., Zheng, K., Dong, J., Fang, Q., Hong, J., & Wang, X. (2016). Clustering and cellular distribution characteristics of virus particles of tomato spotted wilt virus and tomato zonate spot virus in different plant hosts plant viruses. Virology Journal, 13(1) doi:10.1186/s12985-016-0466-x |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |