UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Good indoor air quality in school environment is crucial for teaching and learning processes, as well as student development. This study aims to identify the composition of PM2.5 and the main sources of it which influence the indoor and outdoor school environment. The PM2.5 sampling was conducted using a portable low volume air sampler and took place at three different primary schools. The chemical composition of PM2.5 is comprised of water-soluble inorganic ions (WSII) and potentially toxic trace metals. WSII (Cl?, NO3?, SO42?, Na+, NH4+, K+, Mg2+, Ca2+) were analysed using ion chromatography (IC) and trace metals concentrations (Al, Fe, Zn, Cr, Cu, Mn, Pb, Ni, As, Co, Cd) using inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that the highest average for PM2.5 concentrations in an indoor classroom was recorded at the school located in the industrial area (23.5 ?g/m3) followed by urban (18.6 ?g/m3) and suburban (9.58 ?g/m3). The indoor to outdoor (I/O) ratio values for PM2.5 concentrations were slightly above one, indicating that open doors and windows highly affected indoor PM2.5 concentrations. Source apportionment analysis indicated that the sources of both indoor and outdoor PM2.5 were mixed of natural (crustal, mineral dust and sea salt) and anthropogenic (vehicle, industrial and biomass burning). The hazard quotient (HQ) value was lower than the acceptable limits. The excess lifetime cancer risk (ELCR) value for all three stations, however, was found to be slightly higher than the acceptable level (1.0E-06) for Cr and Ni. ? 2021 Turkish National Committee for Air Pollution Research and Control |
References |
Traffic-related air pollution: A critical review of the literature on emissions, exposure, and health effects. (2010). Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects, Retrieved from www.scopus.com Adgate, J. L., Ramachandran, G., Pratt, G. C., Waller, L. A., & Sexton, K. (2002). Spatial and temporal variability in outdoor, indoor, and personal PM2.5 exposure. Atmospheric Environment, 36(20), 3255-3265. doi:10.1016/S1352-2310(02)00326-6 Almeida, S. M., Canha, N., Silva, A., Do Carmo Freitas, M., Pegas, P., Alves, C., . . . Pio, C. A. (2011). Children exposure to atmospheric particles in indoor of lisbon primary schools. Atmospheric Environment, 45(40), 7594-7599. doi:10.1016/j.atmosenv.2010.11.052 Amil, N., Latif, M. T., Khan, M. F., & Mohamad, M. (2016). Seasonal variability of PM2.5composition and sources in the klang valley urban-industrial environment. Atmospheric Chemistry and Physics, 16(8), 5357-5381. doi:10.5194/acp-16-5357-2016 Becerra, J. A., Lizana, J., Gil, M., Barrios-Padura, A., Blondeau, P., & Chacartegui, R. (2020). Identification of potential indoor air pollutants in schools. Journal of Cleaner Production, 242 doi:10.1016/j.jclepro.2019.118420 Ben-David, T., Wang, S., Rackes, A., & Waring, M. S. (2018). Measuring the efficacy of HVAC particle filtration over a range of ventilation rates in an office building. Building and Environment, 144, 648-656. doi:10.1016/j.buildenv.2018.08.018 Bennett, J., Davy, P., Trompetter, B., Wang, Y., Pierse, N., Boulic, M., . . . Howden-Chapman, P. (2019). Sources of indoor air pollution at a new zealand urban primary school; a case study. Atmospheric Pollution Research, 10(2), 435-444. doi:10.1016/j.apr.2018.09.006 Braniš, M., Šafránek, J., & Hytychová, A. (2009). Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school. Building and Environment, 44(6), 1246-1252. doi:10.1016/j.buildenv.2008.09.010 Bressi, M., Sciare, J., Ghersi, V., Bonnaire, N., Nicolas, J. B., Petit, J. -., . . . Féron, A. (2013). A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of paris (france). Atmospheric Chemistry and Physics, 13(15), 7825-7844. doi:10.5194/acp-13-7825-2013 Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., Petit, J. -., Nicolas, J. B., . . . Theodosi, C. (2014). Sources and geographical origins of fine aerosols in paris (france). Atmospheric Chemistry and Physics, 14(16), 8813-8839. doi:10.5194/acp-14-8813-2014 Brockmeyer, S., & D'Angiulli, A. (2016). How air pollution alters brain development: The role of neuroinflammation. Translational Neuroscience, 7(1), 24-30. doi:10.1515/tnsci-2016-0005 Buonanno, G., Morawska, L., Stabile, L., Wang, L., & Giovinco, G. (2012). A comparison of submicrometer particle dose between australian and italian people. Environmental Pollution, 169, 183-189. doi:10.1016/j.envpol.2012.03.002 Calderón-Garcidueñas, L., Serrano-Sierra, A., Torres-Jardón, R., Zhu, H., Yuan, Y., Smith, D., . . . Guilarte, T. R. (2013). The impact of environmental metals in young urbanites' brains. Experimental and Toxicologic Pathology, 65(5), 503-511. doi:10.1016/j.etp.2012.02.006 Canha, N., Martinho, M., Almeida-Silva, M., Freitas, M. D. C., Almeida, S. M., Pegas, P., . . . Contreiras, T. (2012). Indoor air quality in primary schools. International Journal of Environment and Pollution, 50(1-4), 396-410. doi:10.1504/IJEP.2012.051210 Cesari, D., Contini, D., Genga, A., Siciliano, M., Elefante, C., Baglivi, F., & Daniele, L. (2012). Analysis of raw soils and their re-suspended PM10 fractions: Characterisation of source profiles and enrichment factors. Applied Geochemistry, 27(6), 1238-1246. doi:10.1016/j.apgeochem.2012.02.029 Chatzidiakou, L., Mumovic, D., & Summerfield, A. (2015). Is CO2 a good proxy for indoor air quality in classrooms? part 1: The interrelationships between thermal conditions, CO2 levels, ventilation rates and selected indoor pollutants. Building Services Engineering Research and Technology, 36(2), 129-161. doi:10.1177/0143624414566244 Chen, A., Cao, Q., Zhou, J., Yang, B., Chang, V. W. -., & Nazaroff, W. W. (2016). Indoor and outdoor particles in an air-conditioned building during and after the 2013 haze in singapore. Building and Environment, 99, 73-81. doi:10.1016/j.buildenv.2016.01.002 Chen, C., & Zhao, B. (2011). Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment, 45(2), 275-288. doi:10.1016/j.atmosenv.2010.09.048 Chen, H., Lu, X., Li, L. Y., Gao, T., & Chang, Y. (2014). Metal contamination in campus dust of xi'an, china: A study based on multivariate statistics and spatial distribution. Science of the Total Environment, 484(1), 27-35. doi:10.1016/j.scitotenv.2014.03.026 Chen, J., Brager, G. S., Augenbroe, G., & Song, X. (2019). Impact of outdoor air quality on the natural ventilation usage of commercial buildings in the US. Applied Energy, 235, 673-684. doi:10.1016/j.apenergy.2018.11.020 Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., . . . Zhang, R. (2015). PM2.5 and PM10-2.5 chemical composition and source apportionment near a hong kong roadway. Particuology, 18, 96-104. doi:10.1016/j.partic.2013.10.003 Chithra, V. S., & Shiva Nagendra, S. M. (2012). Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in chennai, india. Building and Environment, 54, 159-167. doi:10.1016/j.buildenv.2012.01.016 Çot, D. A., Yoldaşcan, E., & Akbaba, M. (2017). Health effects of indoor air quality. The Turkish J.Occup.Environ.Med.Safety, 2, 14. Retrieved from www.scopus.com Dai, W., Gao, J., Cao, G., & Ouyang, F. (2013). Chemical composition and source identification of PM2.5 in the suburb of shenzhen, china. Atmospheric Research, 122, 391-400. doi:10.1016/j.atmosres.2012.12.004 Dartan, G., Taşpınar, F., & Toröz, İ. (2015). Assessment of heavy metals in agricultural soils and their source apportionment: A turkish district survey. Environmental Monitoring and Assessment, 187(3) doi:10.1007/s10661-015-4337-5 Deng, S., Zou, B., & Lau, J. (2021). The adverse associations of classrooms’ indoor air quality and thermal comfort conditions on students’ illness related absenteeism between heating and non-heating seasons—a pilot study. International Journal of Environmental Research and Public Health, 18(4), 1-10. doi:10.3390/ijerph18041500 Dorizas, P. V., Assimakopoulos, M. -., Helmis, C., Santamouris, M., Sifnaios, J., & Stathi, K. (2013). Does indoor environmental quality affect students' performance? 34th AIVC-3rd TightVent-2nd Cool Roofs'-1st Venticool Conference, Retrieved from www.scopus.com Dytłow, S., & Górka-Kostrubiec, B. (2021). Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environmental Geochemistry and Health, 43(1), 521-535. doi:10.1007/s10653-020-00726-9 Ebisu, K., Malig, B., Hasheminassab, S., & Sioutas, C. (2019). Age-specific seasonal associations between acute exposure to PM2.5 sources and cardiorespiratory hospital admissions in california. Atmospheric Environment, 218 doi:10.1016/j.atmosenv.2019.117029 Fisk, W. J., Black, D., & Brunner, G. (2011). Benefits and costs of improved IEQ in U.S. offices. Indoor Air, 21(5), 357-367. doi:10.1111/j.1600-0668.2011.00719.x Fromme, H., Twardella, D., Dietrich, S., Heitmann, D., Schierl, R., Liebl, B., & Rüden, H. (2007). Particulate matter in the indoor air of classrooms-exploratory results from munich and surrounding area. Atmospheric Environment, 41(4), 854-866. doi:10.1016/j.atmosenv.2006.08.053 García-Aleix, J. R., Delgado-Saborit, J. M., Verdú-Martín, G., Amigó-Descarrega, J. M., & Esteve-Cano, V. (2014). Trends in arsenic levels in PM10 and PM2.5 aerosol fractions in an industrialized area. Environmental Science and Pollution Research, 21(1), 695-703. doi:10.1007/s11356-013-1950-0 Gumede, P. R., & Savage, M. J. (2017). Respiratory health effects associated with indoor particulate matter (PM2.5) in children residing near a landfill site in durban, south africa. Air Quality, Atmosphere and Health, 10(7), 853-860. doi:10.1007/s11869-017-0475-y Han, N. M. M., Latif, M. T., Othman, M., Dominick, D., Mohamad, N., Juahir, H., & Tahir, N. M. (2014). Composition of selected heavy metals in road dust from kuala lumpur city centre. Environmental Earth Sciences, 72(3), 849-859. doi:10.1007/s12665-013-3008-5 Hassanvand, M. S., Naddafi, K., Faridi, S., Arhami, M., Nabizadeh, R., Sowlat, M. H., . . . Yunesian, M. (2014). Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmospheric Environment, 82, 375-382. doi:10.1016/j.atmosenv.2013.10.048 Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (cd, co, cr, cu, ni, pb, zn and mn) in TSP and PM2.5 in nanjing, china. Atmospheric Environment, 57, 146-152. doi:10.1016/j.atmosenv.2012.04.056 Huang, B., Liu, M., Ren, Z., Bi, X., Zhang, G., Sheng, G., & Fu, J. (2013). Chemical composition, diurnal variation and sources of PM2.5 at two industrial sites of south china. Atmospheric Pollution Research, 4(3), 298-305. doi:10.5094/APR.2013.033 Hunt, A., Johnson, D. L., Griffith, D. A., & Zitoon, S. (2012). Citywide distribution of lead and other element in soils and indoor dusts in syracuse, NY. Applied Geochemistry, 27(5), 985-994. doi:10.1016/j.apgeochem.2011.07.006 Ismail, M., Zafirah Mohd Sofian, N., & Abdullah, A. M. (2010). Indoor air quality in selected samples of primary schools in kuala terengganu, malaysia. EnvironmentAsia, 3(SPECIAL ISSUE), 103-108. Retrieved from www.scopus.com Ismail, M., Zafirah Mohd Sofian, N., & Abdullah, A. M. (2010). Indoor air quality in selected samples of primary schools in kuala terengganu, malaysia. EnvironmentAsia, 3(SPECIAL ISSUE), 103-108. Retrieved from www.scopus.com Jain, S., Sharma, S. K., Vijayan, N., & Mandal, T. K. (2020). Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over delhi, india. Environmental Pollution, 262 doi:10.1016/j.envpol.2020.114337 Janssen, N. A. H., De Hartog, J. J., Hoek, G., Brunekreef, B., Lanki, T., Timonen, K. L., & Pekkanen, J. (2000). Personal exposure to fine particulate matter in elderly subjects: Relation between personal, indoor, and outdoor concentrations. Journal of the Air and Waste Management Association, 50(7), 1133-1143. doi:10.1080/10473289.2000.10464159 Kalaiarasan, G., Balakrishnan, R. M., Sethunath, N. A., & Manoharan, S. (2017). Source apportionment of PM2.5 particles: Influence of outdoor particles on indoor environment of schools using chemical mass balance. Aerosol and Air Quality Research, 17(2), 616-625. doi:10.4209/aaqr.2016.07.0297 Khan, M. F., Sulong, N. A., Latif, M. T., Nadzir, M. S. M., Amil, N., Hussain, D. F. M., . . . Mizohata, A. (2016). Comprehensive assessment of PM2.5 physicochemical properties during the southeast asia dry season (southwest monsoon). Journal of Geophysical Research, 121(24), 14589-14611. doi:10.1002/2016JD025894 Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of agra, india. Science of the Total Environment, 407(24), 6196-6204. doi:10.1016/j.scitotenv.2009.08.050 Kuo, C. -., Chen, G. -., Chen, C. -., Liu, Y. -., & Shieh, C. -. (2014). Kinetics and optimization of lipase-catalyzed synthesis of rose fragrance 2-phenylethyl acetate through transesterification. Process Biochemistry, 49(3), 437-444. doi:10.1016/j.procbio.2013.12.012 Lawson, D. R., & Winchester, J. W. (1979). Sulfur, potassium, and phosphorus association in aerosols from south american tropical rain forests. Journal of Geophysical Research (Green), 84(C7), 3723-3727. Retrieved from www.scopus.com Lei, I. F. M. (2005). Recommended practice for good indoor air quality in macao schools. Retrieved from www.scopus.com Li, M., Weschler, C. J., Bekö, G., Wargocki, P., Lucic, G., & Williams, J. (2020). Human ammonia emission rates under various indoor environmental conditions. Environmental Science and Technology, 54(9), 5419-5428. doi:10.1021/acs.est.0c00094 Liao, Z., Nie, J., & Sun, P. (2020). The impact of particulate matter (PM2.5) on skin barrier revealed by transcriptome analysis: Focusing on cholesterol metabolism. Toxicology Reports, 7, 1-9. doi:10.1016/j.toxrep.2019.11.014 Lin, Y., Wu, M., Fang, F., Wu, J., & Ma, K. (2021). Characteristics and influencing factors of heavy metal pollution in surface dust from driving schools of wuhu, china. Atmospheric Pollution Research, 12(2), 305-315. doi:10.1016/j.apr.2020.11.012 Lu, X., Zhang, X., Li, L. Y., & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in xi'an, china. Environmental Research, 128, 27-34. doi:10.1016/j.envres.2013.11.007 Magnani, N. D., Muresan, X. M., Belmonte, G., Cervellati, F., Sticozzi, C., Pecorelli, A., . . . Valacchi, G. (2016). Skin damage mechanisms related to airborne particulate matter exposure. Toxicological Sciences, 149(1), 227-236. doi:10.1093/toxsci/kfv230 Mainka, A., Zajusz-Zubek, E., & Kaczmarek, K. (2015). PM2.5 in urban and rural nursery schools in upper silesia, poland: Trace elements analysis. International Journal of Environmental Research and Public Health, 12(7), 7990-8008. doi:10.3390/ijerph120707990 Martin, R., Dowling, K., Pearce, D., Sillitoe, J., & Florentine, S. (2014). Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences (Switzerland), 4(3), 128-175. doi:10.3390/geosciences4030128 Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15(1), 27-52. doi:10.1111/j.1600-0668.2004.00320.x Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15(1), 27-52. doi:10.1111/j.1600-0668.2004.00320.x Miller-Schulze, J. P., Shafer, M., Schauer, J. J., Heo, J., Solomon, P. A., Lantz, J., . . . DeMinter, J. (2015). Seasonal contribution of mineral dust and other major components to particulate matter at two remote sites in central asia. Atmospheric Environment, 119, 11-20. doi:10.1016/j.atmosenv.2015.07.011 Mohamad, N., Latif, M. T., & Khan, M. F. (2016). Source apportionment and health risk assessment of PM10 in a naturally ventilated school in a tropical environment. Ecotoxicology and Environmental Safety, 124, 351-362. doi:10.1016/j.ecoenv.2015.11.002 Moreno, T., Rivas, I., Bouso, L., Viana, M., Jones, T., Àlvarez-Pedrerol, M., . . . Querol, X. (2014). Variations in school playground and classroom atmospheric particulate chemistry. Atmospheric Environment, 91, 162-171. doi:10.1016/j.atmosenv.2014.03.066 Murillo-Tovar, M. A., Saldarriaga-Noreña, H., Hernández-Mena, L., Campos-Ramos, A., Cárdenas-González, B., Ospina-Noreña, J. E., . . . Smith, W. (2015). Potential sources of trace metals and ionic species in PM2.5 in guadalajara, mexico: A case study during dry season. Atmosphere, 6(12), 1858-1870. doi:10.3390/atmos6121834 Ni, Y., Shi, G., & Qu, J. (2020). Indoor PM2.5, tobacco smoking and chronic lung diseases: A narrative review. Environmental Research, 181 doi:10.1016/j.envres.2019.108910 Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M. C., & Morais, S. (2019). Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environment International, 124, 180-204. doi:10.1016/j.envint.2018.12.052 Othman, M., Latif, M. T., Jamhari, A. A., Abd Hamid, H. H., Uning, R., Khan, M. F., . . . Chan, K. M. (2021). Spatial distribution of fine and coarse particulate matter during a southwest monsoon in peninsular malaysia. Chemosphere, 262 doi:10.1016/j.chemosphere.2020.127767 Othman, M., Latif, M. T., & Matsumi, Y. (2019). The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in kuala lumpur city centre. Ecotoxicology and Environmental Safety, 170, 739-749. doi:10.1016/j.ecoenv.2018.12.042 Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37(1), 23-35. doi:10.1016/S0169-7439(96)00044-5 Pan, S., Du, S., Wang, X., Zhang, X., Xia, L., Liu, J., . . . Wei, Y. (2019). Analysis and interpretation of the particulate matter (PM10 and PM2.5) concentrations at the subway stations in beijing, china. Sustainable Cities and Society, 45, 366-377. doi:10.1016/j.scs.2018.11.020 Pegas, P. N., Alves, C. A., Nunes, T., Bate-Epey, E. F., Evtyugina, M., & Pio, C. A. (2012). Could houseplants improve indoor air quality in schools? Journal of Toxicology and Environmental Health - Part A: Current Issues, 75(22-23), 1371-1380. doi:10.1080/15287394.2012.721169 Pegas, P. N., Evtyugina, M. G., Alves, C. A., Nunes, T., Cerqueira, M., Franchi, M., . . . Freitas, M. D. C. (2010). Outdoor/indoor air quality in primary schools in lisbon: A preliminary study. Quimica Nova, 33(5), 1145-1149. doi:10.1590/S0100-40422010000500027 Pohl, H. R., Roney, N., & Abadin, H. G. (2011). Metal ions affecting the neurological system. Metal Ions in Life Sciences, 8, 247-262. Retrieved from www.scopus.com Rahman, S. A., Hamzah, M. S., Wood, A. K., Elias, M. S., Salim, N. A. A., & Sanuri, E. (2011). Sources apportionment of fine and coarse aerosol in klang valley, kuala lumpur using positive matrix factorization. Atmospheric Pollution Research, 2(2), 197-206. doi:10.5094/APR.2011.025 Reche, C., Viana, M., Amato, F., Alastuey, A., Moreno, T., Hillamo, R., . . . Querol, X. (2012). Biomass burning contributions to urban aerosols in a coastal mediterranean city. Science of the Total Environment, 427-428, 175-190. doi:10.1016/j.scitotenv.2012.04.012 Rivas, I., Querol, X., Wright, J., & Sunyer, J. (2018). How to protect school children from the neurodevelopmental harms of air pollution by interventions in the school environment in the urban context. Environment International, 121, 199-206. doi:10.1016/j.envint.2018.08.063 Sánchez-Soberón, F., Rovira, J., Sierra, J., Mari, M., Domingo, J. L., & Schuhmacher, M. (2019). Seasonal characterization and dosimetry-assisted risk assessment of indoor particulate matter (PM10-2.5, PM2.5-0.25, and PM0.25) collected in different schools. Environmental Research, 175, 287-296. doi:10.1016/j.envres.2019.05.035 Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., . . . Tanaka, S. (2009). Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at xi'an, china. Atmospheric Environment, 43(18), 2911-2918. doi:10.1016/j.atmosenv.2009.03.005 Shi, L., Wu, X., Danesh Yazdi, M., Braun, D., Abu Awad, Y., Wei, Y., . . . Zanobetti, A. (2020). Long-term effects of PM2·5 on neurological disorders in the american medicare population: A longitudinal cohort study. The Lancet Planetary Health, 4(12), e557-e565. doi:10.1016/S2542-5196(20)30227-8 Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambient particulate matter at rural and urban location of delhi. Journal of Hazardous Materials, 175(1-3), 600-607. doi:10.1016/j.jhazmat.2009.10.047 Slezakova, K., Castro, D., Delerue-Matos, C., Alvim-Ferraz, M. D. C., Morais, S., & Pereira, M. D. C. (2013). Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks. Atmospheric Research, 127, 141-147. doi:10.1016/j.atmosres.2012.06.009 Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L. G., & Zheng, M. (2006). Source apportionment of PM2.5 in beijing using principal component analysis/absolute principal component scores and UNMIX. Science of the Total Environment, 372(1), 278-286. doi:10.1016/j.scitotenv.2006.08.041 Srimuruganandam, B., & Shiva Nagendra, S. M. (2012). Source characterization of PM 10 and PM 2.5 mass using a chemical mass balance model at urban roadside. Science of the Total Environment, 433, 8-19. doi:10.1016/j.scitotenv.2012.05.082 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |