UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0924-2244
Main Author :Ahmad Fudholi
Additional Authors :Mohd Syahriman Mohd Azmi
Title :Current status of solar-assisted greenhouse drying systems for drying industry (food materials and agricultural crops)
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Trends in Food Science and Technology
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Solar energy has long been utilised in crop conservation. The use of solar dryers as a drying method overcomes the drawbacks of the traditional approach to drying crops under the sun. Previous studies were coherently described and focused on the development and thermal convection of greenhouse dryers, structural analysis, crops cultivation for offering choices to reader about solar greenhouse dryers in agriculture. Based on the previous related studies, the current work proposes an evolve and detail review of solar-assisted greenhouse dryers, namely, passive dryers, active dryers and hybrid dryers, from the aspects of system performance, collector performance and the drying characteristics of various crops. Drying crops in a solar greenhouse dryer protects crops from insects, rain and dust. Thus, these dryers are preferred in natural and conventional drying. This review provides a satisfactory guide for researchers to compare, develop and improve solar greenhouse drying systems to achieve optimum crop drying rates based on thermal convection mode. ? 2021 Elsevier Ltd

References

Abdullah, K., & Mursalim. (1997). Drying of vanilla pods using A greenhouse effect solar dryer. Drying Technology, 15(2), 685-698. doi:10.1080/07373939708917254

Ahmad, A., & Prakash, O. (2019). Thermal analysis of north wall insulated greenhouse dryer at different bed conditions operating under natural convection mode. Environmental Progress and Sustainable Energy, 38(6) doi:10.1002/ep.13257

Aktaş, M., Şevik, S., Amini, A., & Khanlari, A. (2016). Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy, 137, 500-515. doi:10.1016/j.solener.2016.08.036

Almuhanna, E. A. (2012). Utilization of a solar greenhouse as a solar dryer for drying dates under the climatic conditions of the eastern province of saudi arabia, part I: Thermal performance analysis of a solar dryer. J Agric Sci, 4(3), 237-246. Retrieved from www.scopus.com

Amer, B. M. A., Gottschalk, K., & Hossain, M. A. (2018). Integrated hybrid solar drying system and its drying kinetics of chamomile. Renewable Energy, 121, 539-547. doi:10.1016/j.renene.2018.01.055

Anwar, S. I., & Tiwari, G. N. (2001). Evaluation of convective heat transfer coefficient in crop drying under open sun drying conditions. Energy Conversion and Management, 42(5), 627-637. doi:10.1016/S0196-8904(00)00065-0

Aritesty, E., & Wulandani, D. (2014). Performance of the rack type-greenhouse effect solar dryer for wild ginger (curcuma xanthorizza roxb.) drying. Paper presented at the Energy Procedia, , 47 94-100. doi:10.1016/j.egypro.2014.01.201 Retrieved from www.scopus.com

Ayyappan, S. (2018). Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying. Energy and Environment, 29(8), 1482-1494. doi:10.1177/0958305X18781891

Azaizia, Z., Kooli, S., Elkhadraoui, A., Hamdi, I., & Guizani, A. (2017). Investigation of a new solar greenhouse drying system for peppers. International Journal of Hydrogen Energy, 42(13), 8818-8826. doi:10.1016/j.ijhydene.2016.11.180

Babu, A. K., Kumaresan, G., Raj, V. A. A., & Velraj, R. (2018). Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 90, 536-556. doi:10.1016/j.rser.2018.04.002

Barnwal, P., & Tiwari, A. (2008). Design, construction and testing of hybrid photovoltaic integrated greenhouse dryer. International Journal of Agricultural Research, 3(2), 110-120. doi:10.3923/ijar.2008.110.120

Barnwal, P., & Tiwari, G. N. (2008). Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy, 82(12), 1131-1144. doi:10.1016/j.solener.2008.05.012

Basunia, M. A., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47(4), 295-301. doi:10.1016/S0260-8774(00)00133-3

Belessiotis, V., & Delyannis, E. (2011). Solar drying. Solar Energy, 85(8), 1665-1691. doi:10.1016/j.solener.2009.10.001

Bhardwaj, A. K., Kumar, R., & Chauhan, R. (2019). Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in western himalayan region. Solar Energy, 177, 395-407. doi:10.1016/j.solener.2018.11.007

Chauhan, P. S., & Kumar, A. (2016). Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode. Energy Reports, 2, 107-116. doi:10.1016/j.egyr.2016.05.004

Chauhan, P. S., & Kumar, A. (2018). Thermal modeling and drying kinetics of gooseberry drying inside north wall insulated greenhouse dryer. Applied Thermal Engineering, 130, 587-597. doi:10.1016/j.applthermaleng.2017.11.028

Chauhan, P. S., Kumar, A., & Nuntadusit, C. (2018). Thermo-environomical and drying kinetics of bitter gourd flakes drying under north wall insulated greenhouse dryer. Solar Energy, 162, 205-216. doi:10.1016/j.solener.2018.01.023

Colak, N., & Hepbasli, A. (2007). Performance analysis of drying of green olive in a tray dryer. Journal of Food Engineering, 80(4), 1188-1193. doi:10.1016/j.jfoodeng.2006.09.017

Condorí, M., Echazú, R., & Saravia, L. (2001). Solar drying of sweet pepper and garlic using the tunnel greenhouse drier. Renewable Energy, 22(4), 447-460. doi:10.1016/S0960-1481(00)00098-7

Ekechukwu, O. V. (1999). Review of solar-energy drying systems I: An overview of drying principles and theory. Energy Conversion and Management, 40(6), 593-613. doi:10.1016/S0196-8904(98)00092-2

Ekechukwu, O. V., & Norton, B. (1999). Review of solar-energy drying systems II: An overview of solar drying technology. Energy Conversion and Management, 40(6), 615-655. doi:10.1016/S0196-8904(98)00093-4

El Hage, H., Herez, A., Ramadan, M., Bazzi, H., & Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy, 157, 815-829. doi:10.1016/j.energy.2018.05.197

El Hage, H., Herez, A., Ramadan, M., Bazzi, H., & Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy, 157, 815-829. doi:10.1016/j.energy.2018.05.197

El-Sebaii, A. A., & Shalaby, S. M. (2012). Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews, 16(1), 37-43. doi:10.1016/j.rser.2011.07.134

Fudholi, A., Bakhtyar, B., Saleh, H., Ruslan, M. H., Othman, M. Y., & Sopian, K. (2016). Drying of salted silver jewfish in a hybrid solar drying system and under open sun: Modeling and performance analyses. International Journal of Green Energy, 13(11), 1135-1144. doi:10.1080/15435075.2016.1175347

Fudholi, A., Othman, M. Y., Ruslan, M. H., & Sopian, K. (2013). Drying of malaysian capsicum annuum L. (red chili) dried by open and solar drying. International Journal of Photoenergy, 2013 doi:10.1155/2013/167895

Fudholi, A., Sopian, K., Alghoul, M. A., Ruslan, M. H., & Othman, M. Y. (2015). Performances and improvement potential of solar drying system for palm oil fronds. Renewable Energy, 78, 561-565. doi:10.1016/j.renene.2015.01.050

Fudholi, A., Sopian, K., Bakhtyar, B., Gabbasa, M., Othman, M. Y., & Ruslan, M. H. (2015). Review of solar drying systems with air based solar collectors in malaysia. Renewable and Sustainable Energy Reviews, 51, 1191-1204. doi:10.1016/j.rser.2015.07.026

Fudholi, A., Sopian, K., Gabbasa, M., Bakhtyar, B., Yahya, M., Ruslan, M. H., & Mat, S. (2015). Techno-economic of solar drying systems with water based solar collectors in malaysia: A review. Renewable and Sustainable Energy Reviews, 51, 809-820. doi:10.1016/j.rser.2015.06.059

Fudholi, A., Sopian, K., Othman, M. Y., & Ruslan, M. H. (2014). Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings, 68(PARTA), 121-129. doi:10.1016/j.enbuild.2013.07.072

Fudholi, A., Sopian, K., Ruslan, M. H., Alghoul, M. A., & Sulaiman, M. Y. (2010). Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews, 14(1), 1-30. doi:10.1016/j.rser.2009.07.032

Fudholi, A., Sopian, K., Yazdi, M. H., Ruslan, M. H., Gabbasa, M., & Kazem, H. A. (2014). Performance analysis of solar drying system for red chili. Solar Energy, 99, 47-54. doi:10.1016/j.solener.2013.10.019

Gunathilake, D. M. C. C., Senanayaka, D. P., Adiletta, P., & Senadeera, W. (2017). Drying of agricultural crops. Advances in Agricultural Machinery and Technologies, , 331-365. Retrieved from www.scopus.com

Hassanien, R. H. E., Li, M., & Dong Lin, W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989-1001. doi:10.1016/j.rser.2015.10.095

Hempattarasuwan, P., Somsong, P., Duangmal, K., Jaskulski, M., Adamiec, J., & Srzednicki, G. (2020). Performance evaluation of parabolic greenhouse-type solar dryer used for drying of cayenne pepper. Drying Technology, 38(1-2), 48-54. doi:10.1080/07373937.2019.1609495

Imre, L. (2014). Solar drying. Handbook of industrial drying, fourth edition (pp. 303-350) doi:10.1201/b17208 Retrieved from www.scopus.com

Jain, D., & Tiwari, G. N. (2004). Effect of greenhouse on crop drying under natural and forced convection I: Evaluation of convective mass transfer coefficient. Energy Conversion and Management, 45(5), 765-783. doi:10.1016/S0196-8904(03)00178-X

Jain, D., & Tiwari, G. N. (2004). Effect of greenhouse on crop drying under natural and forced convection II. thermal modeling and experimental validation. Energy Conversion and Management, 45(17), 2777-2793. doi:10.1016/j.enconman.2003.12.011

Jairaj, K. S., Singh, S. P., & Srikant, K. (2009). A review of solar dryers developed for grape drying. Solar Energy, 83(9), 1698-1712. doi:10.1016/j.solener.2009.06.008

Janjai, S. (2012). A greenhouse type solar dryer for small-scale dried food industries: Development and dissemination. Int J Energy Environ, 3(3), 383-398. Retrieved from www.scopus.com

Janjai, S., Khamvongsa, V., & Bala, B. K. (2007). Development, design, and performance of a PV-ventilated greenhouse dryer. International Energy Journal, 8(4), 249-258. Retrieved from www.scopus.com

Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Bala, B. K., Nagle, M., & Müller, J. (2009). Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy, 83(9), 1550-1565. doi:10.1016/j.solener.2009.05.003

Joudi, K. A., & Farhan, A. A. (2014). Greenhouse heating by solar air heaters on the roof. Renewable Energy, 72, 406-414. doi:10.1016/j.renene.2014.07.025

Kumar, A., & Tiwari, G. N. (2007). Effect of mass on convective mass transfer coefficient during open sun and greenhouse drying of onion flakes. Journal of Food Engineering, 79(4), 1337-1350. doi:10.1016/j.jfoodeng.2006.04.026

Kumar, A., & Tiwari, G. N. (2006). Thermal modeling of a natural convection greenhouse drying system for jaggery: An experimental validation. Solar Energy, 80(9), 1135-1144. doi:10.1016/j.solener.2005.09.011

Kumar, D., Kumar, N., & Jindal, P. (2017). A hybrid gesture recognition method for american sign language. Indian Journal of Science and Technology, 10(1), 1-8. Retrieved from www.scopus.com

Kumar, M. (2013). Forced convection greenhouse papad drying:An experimental study. Journal of Engineering Science and Technology, 8(2), 177-189. Retrieved from www.scopus.com

Madhava, M., Kumar, S., Rao, D. B., Smith, D. D., & Kumar, H. V. H. (2017). Performance evaluation of photovoltaic ventilated hybrid greenhouse dryer under no-load condition. Agricultural Engineering International: CIGR Journal, 19(2), 93-101. Retrieved from www.scopus.com

Mashonjowa, E., Ronsse, F., Milford, J. R., & Pieters, J. G. (2013). Modelling the thermal performance of a naturally ventilated greenhouse in zimbabwe using a dynamic greenhouse climate model. Solar Energy, 91, 381-393. doi:10.1016/j.solener.2012.09.010

Metidji, N. (2017). Solar drying of agro-industrial wastes using a solar greenhouse. Paper presented at the Proceedings of 2016 International Renewable and Sustainable Energy Conference, IRSEC 2016, 289-293. doi:10.1109/IRSEC.2016.7983933 Retrieved from www.scopus.com

Morad, M. M., El-Shazly, M. A., Wasfy, K. I., & El-Maghawry, H. A. M. (2017). Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants. Renewable Energy, 101, 992-1004. doi:10.1016/j.renene.2016.09.042

Nayak, S., Kumar, A., Mishra, J., & Tiwari, G. N. (2011). Drying and testing of mint (mentha piperita) by a hybrid photovoltaic-thermal (PVT)-based greenhouse dryer. Drying Technology, 29(9), 1002-1009. doi:10.1080/07373937.2010.547265

Odhiambo, O. (2015). Development of solar dryers for orange flesh sweet potato drying. Retrieved from www.scopus.com

Patil, R., & Gawande, R. (2016). A review on solar tunnel greenhouse drying system. Renewable and Sustainable Energy Reviews, 56, 196-214. doi:10.1016/j.rser.2015.11.057

Patil, R. C., & Gawande, R. R. (2018). Drying characteristics of amla candy in solar tunnel greenhouse dryer. Journal of Food Process Engineering, 41(6) doi:10.1111/jfpe.12824

Prakash, O., & Kumar, A. (2015). Annual performance of a modified greenhouse dryer under passive mode in no-load conditions. International Journal of Green Energy, 12(11), 1091-1099. doi:10.1080/15435075.2014.961461

Prakash, O., & Kumar, A. (2013). Historical review and recent trends in solar drying systems. International Journal of Green Energy, 10(7), 690-738. doi:10.1080/15435075.2012.727113

Prakash, O., & Kumar, A. (2014). Solar greenhouse drying: A review. Renewable and Sustainable Energy Reviews, 29, 905-910. doi:10.1016/j.rser.2013.08.084

Prakash, O., Kumar, A., & Laguri, V. (2016). Performance of modified greenhouse dryer with thermal energy storage. Energy Reports, 2, 155-162. doi:10.1016/j.egyr.2016.06.003

Pratiksha Verma, N. (2016). A review paper on solar greenhouse dryer. IOSR Journal of Mechanical and Civil Engineering, (2), 43-48. Retrieved from www.scopus.com

Rathore, N. S., & Panwar, N. L. (2010). Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy, 87(8), 2764-2767. doi:10.1016/j.apenergy.2010.03.014

Sahdev, R. K., Kumar, M., & Dhingra, A. K. (2018). Development of empirical expression for the groundnuts drying inside a greenhouse. International Food Research Journal, 25(5), 1858-1863. Retrieved from www.scopus.com

Sarobo, M., Thammapat, P., Pharanat, W., Ruttanasuriyakorn, S., Inta, A., & Sarobol, P. (2018). Mathematical model suitability for thin-layer drying of chiangda herbal tea (gymnema inodorum lour) under modified greenhouse dryer. Paper presented at the Journal of Physics: Conference Series, , 1144(1) doi:10.1088/1742-6596/1144/1/012061 Retrieved from www.scopus.com

Sethi, V. P., & Arora, S. (2009). Improvement in greenhouse solar drying using inclined north wall reflection. Solar Energy, 83(9), 1472-1484. doi:10.1016/j.solener.2009.04.001

Sharma, A., Chen, C. R., & Vu Lan, N. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13(6-7), 1185-1210. doi:10.1016/j.rser.2008.08.015

Singh, P., & Shrivastava, V. (2017). Thermal performance assessment of greenhouse solar dryer under passive mode. International Journal of Advanced Technology in Engineering and Science, 5(5), 530-538. Retrieved from www.scopus.com

Singh, P., Shrivastava, V., & Kumar, A. (2018). Recent developments in greenhouse solar drying: A review. Renewable and Sustainable Energy Reviews, 82, 3250-3262. doi:10.1016/j.rser.2017.10.020

Tanwanichkul, B., Thepa, S., & Rordprapat, W. (2013). Thermal modeling of the forced convection sandwich greenhouse drying system for rubber sheets. Energy Conversion and Management, 74, 511-523. doi:10.1016/j.enconman.2013.06.020

Tham, T. C., Ng, M. X., Gan, S. H., Chua, L. S., Aziz, R., Chuah, L. A., . . . Law, C. L. (2017). Effect of ambient conditions on drying of herbs in solar greenhouse dryer with integrated heat pump. Drying Technology, 35(14), 1721-1732. doi:10.1080/07373937.2016.1271984

Tiwari, G. N., Kumar, S., & Prakash, O. (2004). Evaluation of convective mass transfer coefficient during drying of jaggery. Journal of Food Engineering, 63(2), 219-227. doi:10.1016/j.jfoodeng.2003.07.003

Tiwari, G. N., Nayak, S., Dubey, S., Solanki, S. C., & Singh, R. D. (2009). Performance analysis of a conventional PV/T mixed mode dryer under no load condition. International Journal of Energy Research, 33(10), 919-930. doi:10.1002/er.1520

Tiwari, G. N., Tiwari, A., & Shyam. (2016). Law of thermodynamics and element of heat transfer. Handbook of Solar Energy: Theory, Analysis and Applications, , 85-122. Retrieved from www.scopus.com

Tiwari, S., Agrawal, S., & Tiwari, G. N. (2018). PVT air collector integrated greenhouse dryers. Renewable and Sustainable Energy Reviews, 90, 142-159. doi:10.1016/j.rser.2018.03.043

Tiwari, S., & Tiwari, G. N. (2016). Thermal analysis of photovoltaic-thermal (PVT) single slope roof integrated greenhouse solar dryer. Solar Energy, 138, 128-136. doi:10.1016/j.solener.2016.09.014

Tiwari, S., Tiwari, G. N., & Al-Helal, I. M. (2016). Performance analysis of photovoltaic-thermal (PVT) mixed mode greenhouse solar dryer. Solar Energy, 133, 421-428. doi:10.1016/j.solener.2016.04.033

Tiwari, S., Tripathi, R., & Tiwari, G. N. (2016). Thermal analysis of solar dryer. International Journal of Current Engineering and Technology, 10(1), 81-85. Retrieved from www.scopus.com

Vijayavenkataraman, S., Iniyan, S., & Goic, R. (2012). A review of solar drying technologies. Renewable and Sustainable Energy Reviews, 16(5), 2652-2670. doi:10.1016/j.rser.2012.01.007

Yahya, M., Fahmi, H., Fudholi, A., & Sopian, K. (2018). Performance and economic analyses on solar-assisted heat pump fluidised bed dryer integrated with biomass furnace for rice drying. Solar Energy, 174, 1058-1067. doi:10.1016/j.solener.2018.10.002

Yahya, M., Fudholi, A., Hafizh, H., & Sopian, K. (2016). Comparison of solar dryer and solar-assisted heat pump dryer for cassava. Solar Energy, 136, 606-613. doi:10.1016/j.solener.2016.07.049


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.