UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
To identify the most frequent factors that showed significant results in the previous literature of social media, a quantitative systematic approach of 713 studies was conducted. The results showed that perceived enjoyment (PE), subjective norm (SN), self-efficacy (SE), perceived critical mass (PCM), facilitating conditions (FC), perceived compatibility (PC), and information quality (IQ) were the main frequent factors that showed significant results in the reviewed studies. Accordingly, this research aims to develop a comprehensive theoretical model by extending the Technology Acceptance Model (TAM) with those factors to investigate the students? behavioral intention to adopt social media in higher education. The developed model is validated using the partial least squares-structural equation modeling (PLS-SEM) technique through data collected from 655 students studying at eight colleges/universities situated at eight governorates in Oman. The findings showed that PE, PCM, PC, and IQ positively impact the perceived usefulness (PU) of social media for learning purposes. The results also indicated that PE, SE, FC, and IQ positively affect perceived ease of use (PEOU). However, PU was not affected by SN and SE. Similarly, PEOU was not influenced by PC. The theoretical contributions and practical implications of these results are also discussed. ? 2021 Informa UK Limited, trading as Taylor & Francis Group. |
References |
Ajjan, H., & Hartshorne, R. (2008). Investigating faculty decisions to adopt web 2.0 technologies: Theory and empirical tests. Internet and Higher Education, 11(2), 71-80. doi:10.1016/j.iheduc.2008.05.002 Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi:10.1016/0749-5978(91)90020-T Akram, M. S., & Albalawi, W. (2016). Youths' social media adoption: Theoretical model and empirical evidence. International Journal of Business and Management, 11(2), 22-30. Retrieved from www.scopus.com Al-Aufi, A., & Fulton, C. (2015). Impact of social networking tools on scholarly communication: A cross-institutional study. Electronic Library, 33(2), 224-241. doi:10.1108/EL-05-2013-0093 Al-Emran, M. (2020). Mobile learning during the era of COVID-19. Revista Virtual Universidad Católica Del Norte, 61(61), 1-2. Retrieved from www.scopus.com Al-Kharousi, R., Jabur, N. H., Bouazza, A., & Al-Harrasi, N. (2016). Factors affecting the implementation of web 2.0 applications in omani academic libraries. Electronic Library, 34(2), 332-351. doi:10.1108/EL-06-2014-0101 Al-Mukhaini, E. M., Al-Qayoudhi, W. S., & Al-Badi, A. H. (2014). Adoption of social networking in education: A study of the use of social networks by higher education students in oman. Journal of International Education Research, 10(2), 143-154. Retrieved from www.scopus.com Al-Qaysi, N., Mohamad-Nordin, N., & Al-Emran, M. (2020). What leads to social learning? students’ attitudes towards using social media applications in omani higher education. Education and Information Technologies, 25(3), 2157-2174. doi:10.1007/s10639-019-10074-6 Al-Qaysi, N., Mohamad-Nordin, N., Al-Emran, M., & Al-Sharafi, M. A. (2019). Understanding the differences in students' attitudes towards social media use: A case study from oman. Paper presented at the 2019 IEEE Student Conference on Research and Development, SCOReD 2019, 176-179. doi:10.1109/SCORED.2019.8896251 Retrieved from www.scopus.com Alsaleh, D. A., Elliott, M. T., Fu, F. Q., & Thakur, R. (2019). Cross-cultural differences in the adoption of social media. Journal of Research in Interactive Marketing, 13(1), 119-140. doi:10.1108/JRIM-10-2017-0092 Alshurideh, M., Salloum, S. A., Al Kurdi, B., & Al-Emran, M. (2019). Factors affecting the social networks acceptance: An empirical study using PLS-SEM approach. Paper presented at the ACM International Conference Proceeding Series, , Part F147956 414-418. doi:10.1145/3316615.3316720 Retrieved from www.scopus.com Bandura, A. (1977). Social Learning Theory, Retrieved from www.scopus.com Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory, Retrieved from www.scopus.com Cao, Y., Ajjan, H., & Hong, P. (2013). Using social media applications for educational outcomes in college teaching: A structural equation analysis. British Journal of Educational Technology, 44(4), 581-593. doi:10.1111/bjet.12066 Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, , 295-336. Retrieved from www.scopus.com Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly: Management Information Systems, 19(2), 189-210. doi:10.2307/249688 Dabbagh, N., & Reo, R. (2010). Back to the future: Tracing the roots and learning affordances of social software. Web 2.0-based E-learning: Applying social informatics for tertiary teaching (pp. 1-20) doi:10.4018/978-1-60566-294-7.ch001 Retrieved from www.scopus.com Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319-339. doi:10.2307/249008 Di Pietro, L., & Pantano, E. (2012). An empirical investigation of social network influence on consumer purchasing decision: The case of facebook. Journal of Direct, Data and Digital Marketing Practice, 14(1), 18-29. doi:10.1057/dddmp.2012.10 Doleck, T., Bazelais, P., & Lemay, D. J. (2017). Examining the antecedents of social networking sites use among CEGEP students. Education and Information Technologies, 22(5), 2103-2123. doi:10.1007/s10639-016-9535-4 Doleck, T., Bazelais, P., & Lemay, D. J. (2017). Need for self-expression on instagram: A technology acceptance perspective. Paper presented at the 3rd IEEE International Conference on, doi:10.1109/CIACT.2017.7977305 Retrieved from www.scopus.com Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research, Retrieved from www.scopus.com Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572-2593. doi:10.1111/bjet.12864 Gunasagaran, S., Tamilsalvi Mari, M., Srirangam, S., & Kuppusamy, S. (2019). Adoption of social media by architecture students in fostering community service initiative using technology acceptance model. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 636(1) doi:10.1088/1757-899X/636/1/012015 Retrieved from www.scopus.com Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Retrieved from www.scopus.com Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Retrieved from www.scopus.com Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. doi:10.2753/MTP1069-6679190202 Harris, A. L., & Rea, A. (2009). Web 2.0 and virtual world technologies: A growing impact on IS education. Journal of Information Systems Education, 20(2), 137-144. Retrieved from www.scopus.com Hartzel, K. S., Marley, K. A., & Spangler, W. E. (2016). Online social network adoption: A cross-cultural study. Journal of Computer Information Systems, 56(2), 87-96. doi:10.1080/08874417.2016.1117367 Hassan, Z., Bhatti, Z., & Dahri, K. (2019). A conceptual framework development of the social media learning for undergraduate students of university of sindh. University of Sindh Journal of Information and Communication Technology, 3(4), 178-184. Retrieved from www.scopus.com He, Q., Duan, Y., Fu, Z., & Li, D. (2006). An innovation adoption study of online e-payment in chinese companies. Journal of Electronic Commerce in Organizations, 4(1), 48-69. doi:10.4018/jeco.2006010104 Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. doi:10.1007/s11747-014-0403-8 Hong, I. B. (2018). Social and personal dimensions as predictors of sustainable intention to use facebook in korea: An empirical analysis. Sustainability (Switzerland), 10(8) doi:10.3390/su10082856 Hsu, C. -., & Lu, H. -. (2004). Why do people play on-line games? an extended TAM with social influences and flow experience. Information and Management, 41(7), 853-868. doi:10.1016/j.im.2003.08.014 Huang, J. -., Lin, Y. -., & Chuang, S. -. (2007). Elucidating user behavior of mobile learning: A perspective of the extended technology acceptance model. Electronic Library, 25(5), 585-598. doi:10.1108/02640470710829569 Idemudia, E. C., Raisinghani, M. S., & Samuel-Ojo, O. (2018). The contributing factors of continuance usage of social media: An empirical analysis. Information Systems Frontiers, 20(6), 1267-1280. doi:10.1007/s10796-016-9721-3 Ifinedo, P. (2018). Determinants of students’ continuance intention to use blogs to learn: An empirical investigation. Behaviour and Information Technology, 37(4), 381-392. doi:10.1080/0144929X.2018.1436594 Jackson, J., Gettings, S., & Metcalfe, A. (2018). “The power of twitter”: Using social media at a conference with nursing students. Nurse Education Today, 68, 188-191. doi:10.1016/j.nedt.2018.06.017 Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! the challenges and opportunities of social media. Business Horizons, 53(1), 59-68. doi:10.1016/j.bushor.2009.09.003 Kio, S. I., & Lau, M. C. V. (2017). Utilization of online educational resources in teaching: A moderated mediation perspective. Education and Information Technologies, 22(4), 1327-1346. doi:10.1007/s10639-016-9495-8 Lai, C., Wang, Q., & Lei, J. (2012). What factors predict undergraduate students' use of technology for learning? A case from hong kong. Computers and Education, 59(2), 569-579. doi:10.1016/j.compedu.2012.03.006 Laifa, M. (2018). Facebook usage, involvement and acceptance by algerian students. International Journal of Social Media and Interactive Learning Environments, 6(1), 25-43. Retrieved from www.scopus.com Lou, H., Luo, W., & Strong, D. (2000). Perceived critical mass effect on groupware acceptance. European Journal of Information Systems, 9(2), 91-103. doi:10.1057/palgrave.ejis.3000358 Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123-146. doi:10.1109/TPC.2014.2312452 Machdar, N. M. (2019). The effect of information quality on perceived usefulness and perceived ease of use. Bus.Entrep.Rev, 15(2), 131-146. Retrieved from www.scopus.com Marangunić, N., & Granić, A. (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. doi:10.1007/s10209-014-0348-1 Mason, R. (2006). Learning technologies for adult continuing education. Studies in Continuing Education, 28(2), 121-133. doi:10.1080/01580370600751039 Mehmood, S., & Taswir, T. (2013). The effects of social networking sites on the academic performance of students in college of applied sciences, nizwa, oman. International Journal of Arts and Commerce, 2(1), 111-125. Retrieved from www.scopus.com Moan, I. S., & Rise, J. (2006). Predicting smoking reduction among adolescents using an extended version of the theory of planned behaviour. Psychology and Health, 21(6), 717-738. doi:10.1080/14768320600603448 Mohammadi, H. (2015). Investigating users' perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior, 45, 359-374. doi:10.1016/j.chb.2014.07.044 Mohammadi, H. (2015). Social and individual antecedents of m-learning adoption in iran. Computers in Human Behavior, 49, 191-207. doi:10.1016/j.chb.2015.03.006 Muhaimin, Habibi, A., Mukminin, A., Pratama, R., Asrial, & Harja, H. (2019). Predicting factors affecting intention to use web 2.0 in learning: Evidence from science education. Journal of Baltic Science Education, 18(4), 595-606. doi:10.33225/jbse/19.18.595 O'Reilly, T. (2005). What is web 2.0? What is Web 2.0, Retrieved from www.scopus.com Qin, L., Kim, Y., Hsu, J., & Tan, X. (2011). The effects of social influence on user acceptance of online social networks. International Journal of Human-Computer Interaction, 27(9), 885-899. doi:10.1080/10447318.2011.555311 Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50-69. doi:10.1287/isre.13.1.50.96 Rauniar, R., Rawski, G., Yang, J., & Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: An empirical study on facebook. Journal of Enterprise Information Management, 27(1), 6-30. doi:10.1108/JEIM-04-2012-0011 Ringle, C. M., Wende, S., & Becker, J. (2015). Retrieved from www.scopus.com Rogers, E. M. (1995). Diffusion of Innovations 4, Retrieved from www.scopus.com Rogers, R. W. (1983). Cognitive and physiological processes in fear appeals and attitude change: A revised theory of protection motivation. Social Psychophysiology, , 153-176. Retrieved from www.scopus.com Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78. doi:10.1037/0003-066X.55.1.68 Saini, C., & Abraham, J. (2019). Modeling educational usage of social media in pre-service teacher education. Journal of Computing in Higher Education, 31(1), 21-55. doi:10.1007/s12528-018-9190-4 Salloum, S. A., Qasim Mohammad Alhamad, A., Al-Emran, M., Abdel Monem, A., & Shaalan, K. (2019). Exploring students' acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE Access, 7, 128445-128462. doi:10.1109/ACCESS.2019.2939467 Sharma, S. K., Joshi, A., & Sharma, H. (2016). A multi-analytical approach to predict the facebook usage in higher education. Computers in Human Behavior, 55, 340-353. doi:10.1016/j.chb.2015.09.020 Stathopoulou, A., Siamagka, N. -., & Christodoulides, G. (2019). A multi-stakeholder view of social media as a supporting tool in higher education: An educator–student perspective. European Management Journal, 37(4), 421-431. doi:10.1016/j.emj.2019.01.008 Suki, N. M., Ramayah, T., & Ly, K. K. (2012). Empirical investigation on factors influencing the behavioral intention to use facebook. Universal Access in the Information Society, 11(2), 223-231. doi:10.1007/s10209-011-0248-6 Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. doi:10.1016/0364-0213(88)90023-7 Tantiponganant, P., & Laksitamas, P. (2014). An analysis of the technology acceptance model in understanding students' behavioral intention to use university's social media. Paper presented at the Proceedings - 2014 IIAI 3rd International Conference on Advanced Applied Informatics, IIAI-AAI 2014, 8-12. doi:10.1109/IIAI-AAI.2014.14 Retrieved from www.scopus.com Taswir, T. (2012). Study of converging perspectives: Youth viewership of internet video content and traditional television sets in oman. International Journal of Humanities and Social Science, 2(11), 265-275. Retrieved from www.scopus.com Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. doi:10.1287/isre.6.2.144 Teo, T. (2009). Modelling technology acceptance in education: A study of pre-service teachers. Computers and Education, 52(2), 302-312. doi:10.1016/j.compedu.2008.08.006 Teo, T., Doleck, T., & Bazelais, P. (2018). The role of attachment in facebook usage: A study of canadian college students. Interactive Learning Environments, 26(2), 256-272. doi:10.1080/10494820.2017.1315602 Teo, T., Sang, G., Mei, B., & Hoi, C. K. W. (2019). Investigating pre-service teachers’ acceptance of web 2.0 technologies in their future teaching: A chinese perspective. Interactive Learning Environments, 27(4), 530-546. doi:10.1080/10494820.2018.1489290 Tripopsakul, S. (2018). Social media adoption as a business platform: An integrated tam-toe framework. [Przystosowanie mediów społecznościowych jako platformy biznesowej: Zintegrowany model tam-toe] Polish Journal of Management Studies, 18(2), 350-362. doi:10.17512/pjms.2018.18.2.28 Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. doi:10.1287/isre.11.4.342.11872 Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. doi:10.1287/mnsc.46.2.186.11926 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425-478. doi:10.2307/30036540 Walker, S. K., & Kim, H. (2015). Family educators' technology use and factors influencing technology acceptance attitudes. Family and Consumer Sciences Research Journal, 43(4), 328-342. doi:10.1111/fcsr.12113 Wijesundara, T. R., & Xixiang, S. (2018). Social networking sites acceptance: The role of personal innovativeness in information technology. International Journal of Business and Management, 13(8), 75-85. Retrieved from www.scopus.com Yi, M. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human Computer Studies, 59(4), 431-449. doi:10.1016/S1071-5819(03)00114-9 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |