UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :S Agriculture (General)
ISSN :2073-4395
Main Author :Siti Izera Ismail
Additional Authors :Siti Fairuz Yusoff
Title :Development of vernonia amygdalina leaf extract emulsion formulations in controlling gray mold disease on tomato (Lycopersicon esculentum mill.)
Place of Production :Tanjung Malim
Publisher :Fakulti Teknikal dan Vokasional
Year of Publication :2021
Notes :Agronomy
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Postharvest fruits including tomatoes are commonly infected by gray mold disease resulting in significant economic losses in the fruit industry. Therefore, this study aimed to develop botanical fungicide derived from Vernonia amygdalina leaf extract to control gray mold on tomato. The emulsion formulation containing surfactant, oil carrier and water was optimized at different non-ionic alkyl polyglucoside surfactants through eleven combinations of oil to surfactant ratio (0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and 10:0 w/w). From eight selected formulations, two formulations, F5 and F7 showed stable in storage, remarkable thermodynamic stability, smaller particle size (66.44 and 139.63 nm), highly stable in zeta potential (?32.70 and ?31.70 mV), low in polydispersity index (0.41 and 0.40 PdI), low in viscosity (4.20 and 4.37 cP) and low in surface tension (27.62 and 26.41 mN/m) as compared to other formulations. In situ antifungal activity on tomato fruits showed F5 formulation had a fungicidal activity against B. cinerea with zero disease incidence and severity, whereas F7 formulation reduced 62.5% disease incidence compared to a positive control with scale 1. Based on these findings, F5 formulation exhibited pronounced antifungal activity and may contribute to the development of new and safe antifungal product against gray mold on tomato. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland.

References

Abbey, J. A., Percival, D., Abbey, L., Asiedu, S. K., Prithiviraj, B., & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (botrytis cinerea)–prospects and challenges. Biocontrol Science and Technology, 29(3), 241-262. doi:10.1080/09583157.2018.1548574

Aboofazeli, R. (2010). Nanometric-scaled emulsions (nanoemulsions). Iranian Journal of Pharmaceutical Research, 9(4), 325-326. Retrieved from www.scopus.co

Agarwal, S. P., & Rajesh, K. (2007). Physical Pharmacy, , 177-186. Retrieved from www.scopus.com

Ahmed, K., Li, Y., McClements, D. J., & Xiao, H. (2012). Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry, 132(2), 799-807. doi:10.1016/j.foodchem.2011.11.039

Anton, N., & Vandamme, T. F. (2011). Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharmaceutical Research, 28(5), 978-985. doi:10.1007/s11095-010-0309-1

Asib, N., Omar, D., Awang, R. M., Ashikin, N., & Abdullah, P. (2015). Preparation, characterization and toxicity of nano-emulsion formulations of rotenone extract of derris elliptica improving the quality of herbicide applications to oil palm in malaysia using the CFValve-A constant flow valve view project nano emulsion for. Journal of Chemical, Biological and Physical Sciences, 5(4), 3989-3997. Retrieved from www.scopus.com

Baboota, S., Shakeel, F., Ahuja, A., Ali, J., & Shafiq, S. (2007). Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharmaceutica, 57(3), 315-332. doi:10.2478/v10007-007-0025-5

Barzegar, A., & Moosavi-Movahedi, A. A. (2011). Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS ONE, 6(10) doi:10.1371/journal.pone.0026012

Benelli, G., Pavela, R., Maggi, F., Petrelli, R., & Nicoletti, M. (2017). Commentary: Making green pesticides greener? the potential of plant products for nanosynthesis and pest control. Journal of Cluster Science, 28(1), 3-10. doi:10.1007/s10876-016-1131-7

Benita, S. (1996). Microencapsulation: Methods and Industrial Applications, Retrieved from www.scopus.com

Bhattacharjee, S. (2016). DLS and zeta potential - what they are and what they are not? Journal of Controlled Release, 235, 337-351. doi:10.1016/j.jconrel.2016.06.017

Borges, D. F., Lopes, E. A., Fialho Moraes, A. R., Soares, M. S., Visôtto, L. E., Oliveira, C. R., & Moreira Valente, V. M. (2018). Formulation of botanicals for the control of plant-pathogens: A review. Crop Protection, 110, 135-140. doi:10.1016/j.cropro.2018.04.003

Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2019). Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecological Indicators, 105, 483-495. doi:10.1016/j.ecolind.2018.04.038

Chanamai, R., & McClements, D. J. (2000). Impact of weighting agents and sucrose on gravitational separation of beverage emulsions. Journal of Agricultural and Food Chemistry, 48(11), 5561-5565. doi:10.1021/jf0002903

Chaw Jiang, L., Basri, M., Omar, D., Abdul Rahman, M. B., Salleh, A. B., Raja Abdul Rahman, R. N. Z., & Selamat, A. (2012). Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling eleusine indica (E. indica). Pesticide Biochemistry and Physiology, 102(1), 19-29. doi:10.1016/j.pestbp.2011.10.004

Choupanian, M., Omar, D., Basri, M., & Asib, N. (2017). Preparation and characterization of neem oil nanoemulsion formulations against sitophilus oryzae and tribolium castaneum adults. Journal of Pesticide Science, 42(4), 158-165. doi:10.1584/jpestics.D17-032

Chuacharoen, T., Prasongsuk, S., & Sabliov, C. M. (2019). Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization. Molecules, 24(15) doi:10.3390/molecules24152744

Costa, C., Medronho, B., Filipe, A., Mira, I., Lindman, B., Edlund, H., & Norgren, M. (2019). Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers, 11(10) doi:10.3390/polym11101570

Da Costa, S., Basri, M., Shamsudin, N., & Basri, H. (2014). Stability of positively charged nanoemulsion formulation containing steroidal drug for effective transdermal application. Journal of Chemistry, 2014 doi:10.1155/2014/748680

Dasgupta, N., & Ranjan, S. (2018). Nanoemulsion in food. An Introduction to Food Grade Nano-Emulsions, 13, 35. Retrieved from www.scopus.com

Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., . . . Stewart, A. (2012). Have biopesticides come of age? Trends in Biotechnology, 30(5), 250-258. doi:10.1016/j.tibtech.2012.01.003

Gurpreet, K., & Singh, S. K. (2018). Review of nanoemulsion formulation and characterization techniques. Indian Journal of Pharmaceutical Sciences, 80(5), 781-789. Retrieved from www.scopus.com

Haron, F. F. (2012). Antifungal activity of allamanda spp. extracts and their microemulsion formulations against anthracnose (colletotrichum gloeosporioides) disease of papaya (doctoral dissertation). Antifungal Activity of Allamanda Spp.Extracts and their Microemulsion Formulations Against Anthracnose (Colletotrichum Gloeosporioides) Disease of Papaya, Retrieved from www.scopus.com

Haron, F. F., Sijam, K., Omar, D., & Rahmani, M. (2013). Bioassay-guided isolation of antifungal plumericin from allamanda species (apocynaceae). Journal of Biological Sciences, 13(3), 158-162. doi:10.3923/jbs.2013.158.162

Jiao, J., & Burgess, D. J. (2003). Ostwald ripening of water-in-hydrocarbon emulsions. Journal of Colloid and Interface Science, 264(2), 509-516. doi:10.1016/S0021-9797(03)00276-5

Kah, M., & Hofmann, T. (2014). Nanopesticide research: Current trends and future priorities. Environment International, 63, 224-235. doi:10.1016/j.envint.2013.11.015

Kale, S. N., & Deore, S. L. (2016). Emulsion micro emulsion and nano emulsion: A review. Systematic Reviews in Pharmacy, 8(1), 39-47. doi:10.5530/srp.2017.1.8

Kamarudin, N. B. (2013). Oil Nano-Emulsion Formulations Od Azadirachtin for Control of Bemesia Tabaci GENNADIUS, Retrieved from www.scopus.com

Kaur, J., Kaur, T., & Kaushal, K. (2015). Survey on WSN routing protocols. Int.J.Comput.Appl., 109(10), 24-28. Retrieved from www.scopus.com

Kookana, R. S., Boxall, A. B. A., Reeves, P. T., Ashauer, R., Beulke, S., Chaudhry, Q., . . . Van Den Brink, P. J. (2014). Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. Journal of Agricultural and Food Chemistry, 62(19), 4227-4240. doi:10.1021/jf500232f

Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A., & Kim, K. -. (2019). Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, 131-153. doi:10.1016/j.jconrel.2018.12.012

Lechuga, M., Fernández-Serrano, M., Jurado, E., Núñez-Olea, J., & Ríos, F. (2016). Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicology and Environmental Safety, 125, 1-8. doi:10.1016/j.ecoenv.2015.11.027

Mao, L., & Miao, S. (2015). Structuring food emulsions to improve nutrient delivery during digestion. Food Engineering Reviews, 7(4), 439-451. doi:10.1007/s12393-015-9108-0

Maphosa, Y., Jideani, V. A., & Adeyi, O. (2017). Effect of soluble dietary fibres from bambara groundnut varieties on the stability of orange oil beverage emulsion. African Journal of Science, Technology, Innovation and Development, 9(1), 69-76. doi:10.1080/20421338.2016.1263436

McClements, D. J. (1999). Food Emulsions: Principles, Practice and Techniques, Retrieved from www.scopus.com

Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant-herbivore chemical interactions. Trends in Plant Science, 19(1), 29-35. doi:10.1016/j.tplants.2013.10.002

Nobbmann, U. (2014). Polydispersity – what does it mean for DLS and chromatography?, in: Malvern (ed. Polydispersity - what does it Mean for DLS and Chromatography?, Retrieved from www.scopus.com

Pant, M., Dubey, S., & Patanjali, P. K. (2016). Recent advancements in bio-botanical pesticide formulation technology development. Herbal insecticides, repellents and biomedicines: Effectiveness and commercialization (pp. 117-126) doi:10.1007/978-81-322-2704-5_7 Retrieved from www.scopus.com

Payet, L., & Terentjev, E. M. (2008). Emulsification and stabilization mechanisms of O/W emulsions in the presence of chitosan. Langmuir, 24(21), 12247-12252. doi:10.1021/la8019217

Rashid, T. S. (2016). Antimicrobial Activity of Rhus Coriaria L.Fruit Extracts Against Selected Bacterial and Fungal Pathogens on Tomato, Retrieved from www.scopus.com

Rosero-Hernández, E. D., Moraga, J., Collado, I. G., & Echeverri, F. (2019). Natural compounds that modulate the development of the fungus botrytis cinerea and protect solanum lycopersicum. Plants, 8(5) doi:10.3390/plants8050111

Sepúlveda-Rivas, S., Fritz, H. F., Valenzuela, C., Santiviago, C. A., & Morales, J. O. (2019). Development of novel EE/Alginate polyelectrolyte complex nanoparticles for lysozyme delivery: Physicochemical properties and in vitro safety. Pharmaceutics, 11(3) doi:10.3390/pharmaceutics11030103

Sharma, N., Bansal, M., Visht, S., Sharma, P. K., & Kulkarni, G. T. (2010). Nanoemulsion: A new concept of delivery system. Chron.Young Sci., 1(2), 2-6. Retrieved from www.scopus.com

Sharma, R., Kumari, A., Singh, N. S., Singh, M. K., Dubey, S., Iqbal, N., & Patanjali, P. K. (2019). Development and stability enhancement of neem oil based microemulsion formulation using botanical synergist. Journal of Molecular Liquids, 296 doi:10.1016/j.molliq.2019.112012

Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2012). Nanoemulsions for food applications: Development and characterization. Food and Bioprocess Technology, 5(3), 854-867. doi:10.1007/s11947-011-0683-7

Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28-49. doi:10.1016/j.jconrel.2017.03.008

Siti Fairuz, Y., Ismail, S. I., Farah Farhanah, H., & Mahmud, T. M. M. (2019). Phytochemical composition in hexane and methanolic leaf extract of vernonia amygdalina. Malaysian Applied Biology, 48(5), 11-17. Retrieved from www.scopus.com

Sjöblom, J., Stenius, P., Simon, S., & Grimes, B. A. (2013). Emulsion stabilization. Encyclopedia of Colloid and Interface Science, , 415-454. Retrieved from www.scopus.com

Smole, M. S., Hribernik, S., Kurečič, M., Krajnc, A. U., Kreže, T., & Kleinschek, K. S. (2019). Cellulose nanofibres. Surface Properties of Non-Conventional Cellulose Fibres, , 61-71. Retrieved from www.scopus.com

Sugumar, S., Mukherjee, A., & Chandrasekaran, N. (2015). Nanoemulsion formation and characterization by spontaneous emulsification: Investigation of its antibacterial effects on listeria monocytogenes. Asian Journal of Pharmaceutics, 9(1), 23-28. doi:10.4103/0973-8398.150033

Tadros, T. (2013). Encyclopedia of colloid and interface science. Encyclopedia of Colloid and Interface Science, Retrieved from www.scopus.com

Tadros, T. F. (2018). Agrochemicals, paints and coatings and food colloids. Formulation Science and Technology, 4, 245-254. Retrieved from www.scopus.com

Taylor, P. (1998). Ostwald ripening in emulsions. Advances in Colloid and Interface Science, 75(2), 107-163. doi:10.1016/S0001-8686(98)00035-9

Yusoff, S. F., Haron, F. F., Mohamed, M. T. M., Asib, N., Sakimin, S. Z., Kassim, F. A., & Ismail, S. I. (2020). Antifungal activity and phytochemical screening of vernonia amygdalina extract against botrytis cinerea causing gray mold disease on tomato fruits. Biology, 9(9), 1-14. doi:10.3390/biology9090286

Zaker, M. (2016). Natural plant products as eco-friendly fungicides for plant diseases control-A review. The Agriculturists, 14(1), 134-141. Retrieved from www.scopus.com

Zhang, T., Murphy, M. J., Yu, H., Bagaria, H. G., Yoon, K. Y., Neilson, B. M., . . . Bryant, S. L. (2015). Investigation of nanoparticle adsorption during transport in porous media. SPE Journal, 20(4), 667-677. doi:10.2118/166346-PA

Zhao, S., Guo, Y., Wang, Q., Luo, H., He, C., & An, B. (2020). Expression of flagellin at yeast surface increases biocontrol efficiency of yeast cells against postharvest disease of tomato caused by botrytis cinerea. Postharvest Biology and Technology, 162 doi:10.1016/j.postharvbio.2019.111112

Zheng, L., Cao, C., Chen, Z., Cao, L., Huang, Q., & Song, B. (2020). Evaluation of emulsion stability by monitoring the interaction between droplets. LWT, 132 doi:10.1016/j.lwt.2020.109804


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.