UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Semi-polar (11-22) n-type gallium nitride thin films with various disilane doping levels were deposited via metal-organic chemical vapor deposition. The impact of the dissimilar disilane doping levels on the crystal, morphological, strain, and electrical properties was extensively studied. An X-ray rocking curve analysis demonstrated an improved crystal quality with enhanced terrace-like features using 15 standard cubic centimeters per minute of disilane doping. A closely packed step terrace-like feature was exhibited, reducing the density of arrowhead-like features. This facilitated a smoother surface with a root mean square surface roughness of 5.7 nm. Raman spectroscopy revealed that using an intermediate disilane flux reduced the compressive strain. An electrical analysis also showed that a moderate disilane doping level improved the carrier concentration and mobility to to 1.3 × 1018 cm−3 and 99.3 cm2. V−1. s−1, respectively. |
References |
Anuar, A., Ahmad Makinudin, A. H., Al-Zuhairi, O., Chanlek, N., Abu Bakar, A. S., & Supangat, A. (2020). Growth of semi-polar (112¯2) GaN on m-plane sapphire via in-situ multiple ammonia treatment (I-SMAT) method. Vacuum, 174 doi:10.1016/j.vacuum.2020.109208 Bernardini, F., Fiorentini, V., & Vanderbilt, D. (1997). Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B - Condensed Matter and Materials Physics, 56(16), R10024-R10027. doi:10.1103/PhysRevB.56.R10024 Cantu, P., Wu, F., Waltereit, P., Keller, S., Romanov, A. E., Mishra, U. K., . . . Speck, J. S. (2003). Si doping effect on strain reduction in compressively strained al 0.49Ga0.51N thin films. Applied Physics Letters, 83(4), 674-676. doi:10.1063/1.1595133 Chichibu, S. F., Abare, A. C., Minsky, M. S., Keller, S., Fleischer, S. B., Bowers, J. E., . . . Sota, T. (1998). Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Applied Physics Letters, 73(14), 2006-2008. doi:10.1063/1.122350 Dai, Q., Zhang, X., Zhao, J., Luan, H., Liang, Z., & Cui, Y. (2017). Effects of si-doping on characteristics of semi-polar (112̅2) plane Al0.45Ga0.55N epi-layers. Materials Science in Semiconductor Processing, 58, 30-33. doi:10.1016/j.mssp.2016.11.017 Dasilva, Y. A. R., Chauvat, M. P., Ruterana, P., Lahourcade, L., Monroy, E., & Nataf, G. (2010). Defect structure in heteroepitaxial semipolar (1122) (ga, al)N. Journal of Physics Condensed Matter, 22(35) doi:10.1088/0953-8984/22/35/355802 Farrell, R. M., Young, E. C., Wu, F., Denbaars, S. P., & Speck, J. S. (2012). Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices. Semiconductor Science and Technology, 27(2) doi:10.1088/0268-1242/27/2/024001 Frentrup, M., Ploch, S., Pristovsek, M., & Kneissl, M. (2011). Crystal orientation of GaN layers on (1010) m-plane sapphire. Physica Status Solidi (B) Basic Research, 248(3), 583-587. doi:10.1002/pssb.201046489 Jiang, T., Xu, S., Zhang, J., Li, P., Huang, J., Niu, M., . . . Hao, Y. (2016). Temperature dependence of the raman-active modes in the semipolar (11 2¯2) plane GaN film. Journal of Applied Physics, 120(24) doi:10.1063/1.4972951 Jo, M., Oshima, I., Matsumoto, T., Maeda, N., Kamata, N., & Hirayama, H. (2017). Structural and electrical properties of semipolar (11-22) AlGaN grown on m-plane (1-100) sapphire substrates. Physica Status Solidi (C) Current Topics in Solid State Physics, 14(8) doi:10.1002/pssc.201600248 Kadleikova, M., Breza, J., & Vesely, M. (2001). Raman spectra of synthetic sapphire. Microelectronics Journal, 32(12), 955-958. doi:10.1016/S0026-2692(01)00087-8 Lahourcade, L., Kandaswamy, P. K., Renard, J., Ruterana, P., MacHhadani, H., Tchernycheva, M., . . . Monroy, E. (2008). Interband and intersubband optical characterization of semipolar (112̄2)-oriented GaN/AlN multiple-quantum-well structures. Applied Physics Letters, 93(11) doi:10.1063/1.2978250 Lee, J. ., Han, S., Song, K., & Lee, S. (2014). Optical and electrical improvements of semipolar (1 1 -2 2) GaN-based light emitting diodes by si doping of n-GaN template. Journal of Alloys and Compounds, 598, 85-88. doi:10.1016/j.jallcom.2014.02.031 Lee, Y., Reddy, M. S. P., Kim, B., & Park, C. (2018). Surface morphological, structural, electrical and optical properties of GaN-based light-emitting diodes using submicron-scaled ag islands and ITO thin films. Optical Materials, 81, 109-114. doi:10.1016/j.optmat.2018.05.038 Liu, S. T., Yang, J., Zhao, D. G., Jiang, D. S., Liang, F., Chen, P., . . . Li, M. (2019). The compensation role of deep defects in the electric properties of lightly si-doped GaN. Journal of Alloys and Compounds, 773, 1182-1186. doi:10.1016/j.jallcom.2018.09.333 Manning, I. C., Weng, X., Acord, J. D., Fanton, M. A., Snyder, D. W., & Redwing, J. M. (2009). Tensile stress generation and dislocation reduction in si-doped al x Ga1-x N films. Journal of Applied Physics, 106(2) doi:10.1063/1.3160331 Masui, H., Nakamura, S., DenBaars, S. P., & Mishra, U. K. (2010). Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Transactions on Electron Devices, 57(1), 88-100. doi:10.1109/TED.2009.2033773 Miyoshi, T., Masui, S., Okada, T., Yanamoto, T., Kozaki, T., Nagahama, S. -., & Mukai, T. (2009). 510-515nm InGaN-based green laser diodes on c-plane gan substrate. Applied Physics Express, 2(6) doi:10.1143/APEX.2.062201 Moram, M. A., Kappers, M. J., Massabuau, F., Oliver, R. A., & Humphreys, C. J. (2011). The effects of si doping on dislocation movement and tensile stress in GaN films. Journal of Applied Physics, 109(7) doi:10.1063/1.3553841 Mukundan, S., Mohan, L., Chandan, G., Roul, B., & Krupanidhi, S. B. (2014). Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy. Journal of Applied Physics, 116(20) doi:10.1063/1.4902892 Narukawa, Y., Ichikawa, M., Sanga, D., Sano, M., & Mukai, T. (2010). White light emitting diodes with super-high luminous efficacy. Journal of Physics D: Applied Physics, 43(35) doi:10.1088/0022-3727/43/35/354002 Ng, H. M., Doppalapudi, D., Moustakas, T. D., Weimann, N. G., & Eastman, L. F. (1998). The role of dislocation scattering in n-type GaN films. Applied Physics Letters, 73(6), 821-823. doi:10.1063/1.122012 Omar, A. -., Shuhaimi Bin Abu Bakar, A., Makinudin, A. H. A., Khudus, M. I. M. A., Azman, A., Kamarundzaman, A., & Supangat, A. (2018). Effect of low NH3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD. Superlattices and Microstructures, 117, 207-214. doi:10.1016/j.spmi.2018.03.038 Omar, A. -., Shuhaimi, A., Makinudin, A. H. A., Abdul Khudus, M. I. M., & Supangat, A. (2018). Embedded AlN/GaN multi-layer for enhanced crystal quality and surface morphology of semi-polar (11-22) GaN on m-plane sapphire. Materials Science in Semiconductor Processing, 86, 1-7. doi:10.1016/j.mssp.2018.06.014 Ploch, S., Frentrup, M., Wernicke, T., Pristovsek, M., Weyers, M., & Kneissl, M. (2010). Orientation control of GaN {112̄2} and {101̄3̄} grown of (101̄0) sapphire by metal-organic vapor phase epitaxy. Journal of Crystal Growth, 312(15), 2171-2174. doi:10.1016/j.jcrysgro.2010.04.043 Ploch, S., Wernicke, T., Dinh, D. V., Pristovsek, M., & Kneissl, M. (2012). Surface diffusion and layer morphology of ((112̄2)) GaN grown by metal-organic vapor phase epitaxy. Journal of Applied Physics, 111(3) doi:10.1063/1.3682513 Pristovsek, M., Frentrup, M., Han, Y., & Humphreys, C. J. (2016). Optimizing GaN (1122) hetero-epitaxial templates grown on (1010) sapphire. Physica Status Solidi (B) Basic Research, 253(1), 61-66. doi:10.1002/pssb.201552263 Purnell, J. H., & Walsh, R. (1966). The pyrolysis of monosilane. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 293 Retrieved from www.scopus.com Rowland, L. B., Doverspike, K., & Gaskill, D. K. (1995). Silicon doping of GaN using disilane. Applied Physics Letters, , 1495. doi:10.1063/1.113666 Ryou, J. -., Yoder, P. D., Liu, J., Lochner, Z., Kim, H. S., Choi, S., . . . Dupuis, R. D. (2009). Control of quantum-confined stark effect in InGaN-based quantum wells. IEEE Journal on Selected Topics in Quantum Electronics, 15(4), 1080-1091. doi:10.1109/JSTQE.2009.2014170 Schubert, E. (1994). Doping in III-V semiconductors. MRS Online Proceedings Library Archive, , 340. Retrieved from www.scopus.com Sharma, R., Pattison, P. M., Masui, H., Farrell, R. M., Baker, T. J., Haskell, B. A., . . . Nakamura, S. (2005). Demonstration of a semipolar (10 1- 3-) InGaN/GaN green light emitting diode. Applied Physics Letters, 87(23), 1-3. doi:10.1063/1.2139841 Strittmatter, A., Northrup, J. E., Johnson, N. M., Kisin, M. V., Spiberg, P., El-Ghoroury, H., . . . Syrkin, A. (2011). Semi-polar nitride surfaces and heterostructures. Physica Status Solidi (B) Basic Research, 248(3), 561-573. doi:10.1002/pssb.201046422 Sun, Q., Leung, B., Yerino, C. D., Zhang, Y., & Han, J. (2009). Improving microstructural quality of semipolar (11 2-2) GaN on m -plane sapphire by a two-step growth process. Applied Physics Letters, 95(23) doi:10.1063/1.3269605 Takeuchi, T., Amano, H., & Akasaki, I. (2000). Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 39(2 A), 413-416. doi:10.1143/jjap.39.413 Ueda, M., Kojima, K., Funato, M., Kawakami, Y., Narukawa, Y., & Mukai, T. (2006). Epitaxial growth and optical properties of semipolar (112̄2) GaN and InGaN/GaN quantum wells on GaN bulk substrates. Applied Physics Letters, 89(21) doi:10.1063/1.2397029 Wang, Y., Zhang, X., Luan, H., Yang, H., Wang, S., Dai, Q., . . . Cui, Y. (2016). Effects of si-doping on structural and electrical characteristics of polar, semi-polar, and non-polar AlGaN epi-layers. Materials Science in Semiconductor Processing, 42, 344-348. doi:10.1016/j.mssp.2015.11.003 Xu, S. R., Zhang, J. C., Cao, Y. R., Zhou, X. W., Xue, J. S., Lin, Z. Y., Hao, Y. (2012). Improvements in (112̄2) semipolar GaN crystal quality by graded superlattices. Thin Solid Films, 520(6), 1909-1912. doi:10.1016/j.tsf.2011.09.049 Yamada, H., Iso, K., Saito, M., Fujito, K., DenBaars, S. P., Speck, J. S., & Nakamura, S. (2007). Impact of substrate miscut on the characteristic of m-plane InGaN/GaN light emitting diodes. Japanese Journal of Applied Physics, Part 2: Letters, 46(45-49), L1117-L1119. doi:10.1143/JJAP.46.L1117 Yamamoto, S., Zhao, Y., Pan, C. -., Chung, R. B., Fujito, K., Sonoda, J., . . . Nakamura, S. (2010). High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20̄21) GaN substrates. Applied Physics Express, 3(12) doi:10.1143/APEX.3.122102 Yan, F., Gao, H., Zhang, H., Wang, G., Yang, F., Yan, J., . . . Li, J. (2007). Temperature dependence of the raman-active modes in the nonpolar a -plane GaN film. Journal of Applied Physics, 101(2) doi:10.1063/1.2424537
Yang, H., Zhang, X., Wang, S., Wang, Y., Luan, H., Dai, Q., Cui, Y. (2016). Effects of si-doping on structural, electrical, and optical properties of polar and non-polar AlGaN epi-layers. Superlattices and Microstructures, 96, 1-7. doi:10.1016/j.spmi.2016.04.040
Zhao, G., Wang, L., Yang, S., Li, H., Wei, H., Han, D., & Wang, Z. (2016). Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers. Scientific Reports, 6 doi:10.1038/srep20787 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |