UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :QD Chemistry
ISSN :1735-6865
Main Author :Suriani Abu Bakar
Title :Effect of Surfactants' Tail Number on the PVDF/GO/TiO2-Based Nanofiltration Membrane for Dye Rejection and Antifouling Performance Improvement
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :International Journal of Environmental Research
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
In this work, the novel utilisation of customised double- and triple-tail sodium bis(3,5,5-trimethyl-1-hexyl) sulphosuccinate (AOT4) and sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-silphonate (TC14) surfactants to assist the direct graphene oxide (GO) synthesis via electrochemical exfoliation utilising dimethylacetamide (DMAc) as a solvent were investigated. The synthesised DMAc-based GO and titanium dioxide (TiO2) nanoparticles were then used to fabricate polyvinylidene fluoride (PVDF)-based nanofiltration (NF) membranes by the non-solvent-induced phase separation method. The incorporation of GO and TiO2 as hydrophilic nanoparticles were to enhance membrane hydrophilicity. The utilisation of higher surfactants’ tail number obviously alters the fabricated membrane’s morphology which further affects its performance for dye rejection and antifouling ability. Higher surfactants’ tail number resulted in higher oxidation process which then provided more interaction between the GO and PVDF. Based on the dead-end cell measurement, PVDF/TC14-GO/TiO2 presented a slightly higher dye rejection efficiency of 92.61% as compared to PVDF/AOT4-GO/TiO2 membrane (92.39%). However, PVDF/TC14-GO/TiO2 possessed three times higher water permeability (48.968 L/m2 h MPa) than PVDF/AOT4-GO/TiO2 (16.533 L/m2 h MPa) and also higher hydrophilicity as presented by lower contact angle (65.4 ± 0.17°). This confirmed that higher surfactants’ tail number improved the fabricated membrane’s performance. Both fabricated membranes also exhibited high flux recovery ratio (FRR) (> 100%) which indicated better antifouling properties.

References

Ai, J., Yang, L., Liao, G., Xia, H., & Xiao, F. (2018). Applications of graphene oxide blended poly(vinylidene fluoride) membranes for the treatment of organic matters and its membrane fouling investigation. Applied Surface Science, 455, 502-512. doi:10.1016/j.apsusc.2018.05.162

Aid, S., Eddhahak, A., Khelladi, S., Ortega, Z., Chaabani, S., & Tcharkhtchi, A. (2019). On the miscibility of PVDF/PMMA polymer blends: Thermodynamics, experimental and numerical investigations. Polymer Testing, 73, 222-231. doi:10.1016/j.polymertesting.2018.11.036

Anvari, A., Yancheshme, A. A., Rekaabdar, F., Hemmati, M., Tavakolmoghadam, M., & Safekordi, A. (2017). PVDF/PAN blend membrane: Preparation, characterization and fouling analysis. Journal of Polymers and the Environment, 25(4), 1348-1358. doi:10.1007/s10924-016-0889-x

Contreras, M. M., Nascimento, C. R., Cucinelli Neto, R. P., Teixeira, S., Berry, N., Costa, M. F., & Costa, C. A. (2018). TD-NMR analysis of structural evolution in PVDF induced by stress relaxation. Polymer Testing, 68, 153-159. doi:10.1016/j.polymertesting.2018.03.051

de Morais Coutinho, C., Chiu, M. C., Basso, R. C., Ribeiro, A. P. B., Gonçalves, L. A. G., & Viotto, L. A. (2009). State of art of the application of membrane technology to vegetable oils: A review. Food Research International, 42(5-6), 536-550. doi:10.1016/j.foodres.2009.02.010

Diez-Pascual, A. M., Valles, C., Mateos, R., Vera-Lopez, S., Kinloch, I. A., & Andres, M. P. S. (2018). Influence of surfactants of different nature and chain length on the morphology, thermal stability and sheet resistance of graphene. Soft Matter, 14(29), 6013-6023. doi:10.1039/c8sm01017j

Escobar, I. C., & Van Der Bruggen, B. (2015). Microfiltration and ultrafiltration membrane science and technology. Journal of Applied Polymer Science, 132(21) doi:10.1002/app.42002

Francolini, I., Perugini, E., Silvestro, I., Lopreiato, M., d'Abusco, A. S., Valentini, F., Piozzi, A. (2019). Graphene oxide oxygen content affects physical and biological properties of scaffolds based on Chitosan/graphene oxide conjugates. Materials, 12(7) doi:10.3390/ma12071142

Freire, E., Bianchi, O., Martins, J. N., Monteiro, E. E. C., & Forte, M. M. C. (2012). Non-isothermal crystallization of PVDF/PMMA blends processed in low and high shear mixers. Journal of Non-Crystalline Solids, 358(18-19), 2674-2681. doi:10.1016/j.jnoncrysol.2012.06.021

Garcia Domenech, N., Purcell-Milton, F., & Gun'ko, Y. K. (2020). Recent progress and future prospects in development of advanced materials for nanofiltration. Materials Today Communications, 23 doi:10.1016/j.mtcomm.2019.100888

Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686. doi:10.1039/c1cs15078b

Kang, G., & Cao, Y. (2014). Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review. Journal of Membrane Science, 463, 145-165. doi:10.1016/j.memsci.2014.03.055

Kaniyoor, A., & Ramaprabhu, S. (2012). A raman spectroscopic investigation of graphite oxide derived graphene. AIP Advances, 2(3) doi:10.1063/1.4756995

Khan, U., O'Neill, A., Lotya, M., De, S., & Coleman, J. N. (2010). High-concentration solvent exfoliation of graphene. Small, 6(7), 864-871. doi:10.1002/smll.200902066

Kochameshki, M. G., Marjani, A., Mahmoudian, M., & Farhadi, K. (2017). Grafting of diallyldimethylammonium chloride on graphene oxide by RAFT polymerization for modification of nanocomposite polysulfone membranes using in water treatment. Chemical Engineering Journal, 309, 206-221. doi:10.1016/j.cej.2016.10.008

Ladewig, B., & Al-Shaeli, M. N. Z. (2017). Fundamentals of membrane processes. Fundamentals of Membrane Bioreactors, ,13-37. Retrieved from www.scopus.com

Lai, Y., Wan, L., & Wang, B. (2019). PVDF/graphene composite nanoporous membranes for vanadium flow batteries. Membranes, 9(7) doi:10.3390/membranes9070089

Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388. doi:10.1126/science.1157996

Li, J., Yan, B., Shao, X., Wang, S., Tian, H., & Zhang, Q. (2015). Influence of Ag/TiO 2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Applied Surface Science, 324, 82-89. doi:10.1016/j.apsusc.2014.10.080

Li, R., Fan, H., Shen, L., Rao, L., Tang, J., Hu, S., & Lin, H. (2020). Inkjet printing assisted fabrication of polyphenol-based coating membranes for oil/water separation. Chemosphere, 250 doi:10.1016/j.chemosphere.2020.126236

Liao, Y., Loh, C., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:10.1016/j.progpolymsci.2017.10.003

Liu, H., Chen, Y., Zhang, K., Wang, C., Hu, X., Cheng, B., & Zhang, Y. (2019). Poly(vinylidene fluoride) hollow fiber membrane for high-efficiency separation of dyes-salts. Journal of Membrane Science, 578, 43-52. doi:10.1016/j.memsci.2019.02.029

Liu, Q., Huang, S., Zhang, Y., & Zhao, S. (2018). Comparing the antifouling effects of activated carbon and TiO2 in ultrafiltration membrane development. Journal of Colloid and Interface Science, 515, 109-118. doi:10.1016/j.jcis.2018.01.026

Liu, T., Yang, B., Graham, N., Yu, W., & Sun, K. (2017). Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment. Journal of Membrane Science, 542, 31-40. doi:10.1016/j.memsci.2017.07.061

Liu, Y., Shen, L., Lin, H., Yu, W., Xu, Y., Li, R., He, Y. (2020). A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. Journal of Membrane Science, 612 doi:10.1016/j.memsci.2020.11837

Luo, L., Peng, T., Yuan, M., Sun, H., Dai, S., & Wang, L. (2018). Preparation of graphite oxide containing different oxygen-containing functional groups and the study of ammonia gas sensitivity. Sensors (Switzerland), 18(11) doi:10.3390/s18113745

Méricq, J. -., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF-TiO2 membranes for water treatment. Chemical Engineering Science, 123, 283-291. doi:10.1016/j.ces.2014.10.047

Miao, W., Li, Z., Yan, X., Guo, Y., & Lang, W. (2017). Improved ultrafiltration performance and chlorine resistance of PVDF hollow fiber membranes via doping with sulfonated graphene oxide. Chemical Engineering Journal, 317, 901-912. doi:10.1016/j.cej.2017.02.121

Mishra, S., Kumaran, K. T., Sivakumaran, R., Pandian, S. P., & Kundu, S. (2016). Synthesis of PVDF/CNT and their functionalized composites for studying their electrical properties to analyze their applicability in actuation & sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 684-696. doi:10.1016/j.colsurfa.2016.09.007

Mohamed, A., Anas, A. K., Abu Bakar, S., Aziz, A. A., Sagisaka, M., Brown, P., Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 292(11), 3013-3023. doi:10.1007/s00396-014-3354-1

Nikooe, N., & Saljoughi, E. (2017). Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface Science, 413, 41-49. doi:10.1016/j.apsusc.2017.04.029

Nor, N. A. M., Jaafar, J., Ismail, A. F., Mohamed, M. A., Rahman, M. A., Othman, M. H. D.,  Yusof, N. (2016). Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalination, 391, 89-97. doi:10.1016/j.desal.2016.01.015

Nurhafizah, M. D., Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I. M., Kamari, A., Mahmood, M. R. (2015). The synthesis of graphene oxide via electrochemical exfoliation method. Adv.Mater.Res., 1109, 55-59. Retrieved from www.scopus.com

Park, H. J., Bhatti, U. H., Nam, S. C., Park, S. Y., Lee, K. B., & Baek, I. H. (2019). Nafion/TiO2 nanoparticle decorated thin film composite hollow fiber membrane for efficient removal of SO2 gas. Separation and Purification Technology, 211, 377-390. doi:10.1016/j.seppur.2018.10.010

Park, S. -., Cheedrala, R. K., Diallo, M. S., Kim, C., Kim, I. S., & Goddard, W. A.,III. (2014). Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. Nanotechnology for sustainable development, first edition (pp. 33-46) doi:10.1007/978-3-319-05041-6_3 Retrieved from www.scopus.com

Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., Mullen, K. (2013). Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 7(4), 3598-3606. doi:10.1021/nn400576v

Rao, L., Tang, J., Hu, S., Shen, L., Xu, Y., Li, R., & Lin, H. (2020). Inkjet printing assisted electroless ni plating to fabricate nickel coated polypropylene membrane with improved performance. Journal of Colloid and Interface Science, 565, 546-554. doi:10.1016/j.jcis.2020.01.069

Safarpour, M., Vatanpour, V., & Khataee, A. (2016). Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination, 393, 65-78. doi:10.1016/j.desal.2015.07.003

Sangermano, M., Farrukh, M., Tiraferri, A., Dizman, C., & Yagci, Y. (2015). Synthesis, preparation and characterization of UV-cured methacrylated polysulfone-based membranes. Materials Today Communications, 5, 64-69. doi:10.1016/j.mtcomm.2015.10.002

Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 306, 1116-1137. doi:10.1016/j.cej.2016.08.053

Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. (2013). Nanofiltration for water and wastewater treatment - A mini review. Drinking Water Engineering and Science, 6(1), 47-53. doi:10.5194/dwes-6-47-2013

Suriani, A. B., Fatiatun, Mohamed, A., Muqoyyanah, Hashim, N., Rosmi, M. S., Abdul Khalil, H. P. S. (2018). Reduced graphene oxide/platinum hybrid counter electrode assisted by custom-made triple-tail surfactant and zinc oxide/titanium dioxide bilayer nanocomposite photoanode for enhancement of DSSCs photovoltaic performance. Optik, 161, 70-83. doi:10.1016/j.ijleo.2018.02.013

Suriani, A. B., Muqoyyanah, Mohamed, A., Mamat, M. H., Hashim, N., Isa, I. M., Ahmad, M. K. (2018). Improving the photovoltaic performance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Optik, 158, 522-534. doi:10.1016/j.ijleo.2017.12.149

Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., Khalil, H. P. S. A. (2018). Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics, 29(13), 10723-10743. doi:10.1007/s10854-018-9139-4

Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Rohani, R., Yusoff, I. I., Khalil, H. P. S. A. (2019). Incorporation of electrochemically exfoliated graphene oxide and TiO2 into polyvinylidene fluoride-based nanofiltration membrane for dye rejection. Water, Air, and Soil Pollution, 230(8) doi:10.1007/s11270-019-4222-x

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. (2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. Materials and Design, 99, 174-181. doi:10.1016/j.matdes.2016.03.067

Teng, J., Wu, M., Chen, J., Lin, H., & H, Y. (2020). Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor. Chemosphere, 255 doi:10.1016/j.chemosphere.2020.126953

Tran, T. T. V., Kumar, S. R., & Lue, S. J. (2019). Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction. Journal of Membrane Science, 575, 38-49. doi:10.1016/j.memsci.2018.12.070

Vo, L. T., & Giannelis, E. P. (2007). Compatibilizing poly(vinylidene fluoride)/nylon-6 blends with nanoclay. Macromolecules, 40(23), 8271-8276. doi:10.1021/ma071508q

Wang, F., Wu, Y., & Huang, Y. (2018). Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane. Composites Part A: Applied Science and Manufacturing, 110, 126-132. doi:10.1016/j.compositesa.2018.04.023

Wang, J., Lang, W. -., Xu, H., Zhang, X., & Guo, Y. (2015). Improved poly(vinyl butyral) hollow fiber membranes by embedding multi-walled carbon nanotube for the ultrafiltrations of bovine serum albumin and humic acid. Chemical Engineering Journal, 260, 90-98. doi:10.1016/j.cej.2014.08.082

Wang, J., Wang, Y., Zhu, J., Zhang, Y., Liu, J., & Van der Bruggen, B. (2017). Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance. Journal of Membrane Science, 533, 279-288. doi:10.1016/j.memsci.2017.03.040

Wu, L. -., Zhang, X., Wang, T., Du, C., & Yang, C. (2019). Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide. Chemical Engineering Research and Design, 141, 492-501. doi:10.1016/j.cherd.2018.11.025

Wu, M., Chen, Y., Lin, H., Zhao, L., Shen, L., Li, R., He, Y. (2020). Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights. Water Research, 181 doi:10.1016/j.watres.2020.115932

Xia, S., & Ni, M. (2015). Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal. Journal of Membrane Science, 473, 54-62. doi:10.1016/j.memsci.2014.09.018

Xu, Y., Xiao, Y., Zhang, W., Lin, H., Shen, L., Li, R.,  Liao, B. (2021). Plant polyphenol intermediated metal-organic framework (MOF) membranes for efficient desalination. Journal of Membrane Science, 618 doi:10.1016/j.memsci.2020.118726

Yang, M., Zhao, C., Zhang, S., Li, P., & Hou, D. (2017). Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Applied Surface Science, 394, 149-159. doi:10.1016/j.apsusc.2016.10.069

Yao, Y. W., Cui, L. H., Li, Y., Yu, N. C., Dong, H. S., Chen, X., & Wei, F. (2015). Electrocatalytic degradation of methyl orange on PbO2-TiO2 nanocomposite electrodes. International Journal of Environmental Research, 9(4), 1357-1364. Retrieved from www.scopus.com

Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid and Interface Science, 20(5-6), 329-338. doi:10.1016/j.cocis.2015.10.007

Yu, S., Zheng, W., Yu, W., Zhang, Y., Jiang, Q., & Zhao, Z. (2009). Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules, 42(22), 8870-8874. doi:10.1021/ma901765j

Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. -., & Voon, C. H. (2017). Synthesis of graphene oxide using modified hummers method: Solvent influence. Paper presented at the Procedia Engineering, , 184 469-477. doi:10.1016/j.proeng.2017.04.118 Retrieved from www.scopus.com

Zeng, G., He, Y., Yu, Z., Zhan, Y., Ma, L., & Zhang, L. (2016). Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO 2 -HNTs nanocomposites. Applied Surface Science, 371, 624-632. doi:10.1016/j.apsusc.2016.02.211

Zhang, J., Wang, Z., Wang, Q., Pan, C., & Wu, Z. (2017). Comparison of antifouling behaviours of modified PVDF membranes by TiO2sols with different nanoparticle size: Implications of casting solution stability. Journal of Membrane Science, 525, 378-386. doi:10.1016/j.memsci.2016.12.021

Zhang, J., Xu, Z., Shan, M., Zhou, B., Li, Y., Li, B., . . . Qian, X. (2013). Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 448, 81-92. doi:10.1016/j.memsci.2013.07.064

Zhang, R., Liu, Y., He, M., Su, Y., Zhao, X., Elimelech, M., & Jiang, Z. (2016). Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chemical Society Reviews, 45(21), 5888-5924. doi:10.1039/c5cs00579e

Zhang, X., Wang, Y., You, Y., Meng, H., Zhang, J., & Xu, X. (2012). Preparation, performance and adsorption activity of TiO 2 nanoparticles entrapped PVDF hybrid membranes. Applied Surface Science, 263, 660-665. doi:10.1016/j.apsusc.2012.09.131

Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., & Wang, X. (2017). Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429-439. doi:10.1016/j.jcis.2017.05.068

Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453, 292-301. doi:10.1016/j.memsci.2013.10.070


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)