UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Ag NPs embedded in Er3+/Nd3+ codoped lithium niobate tellurite glasses of the form (68-x)TeO2-15Li2CO3-15Nb2O5-1Er2O3-1Nd2O3-(x)AgCl with x = 1, 2 and 3 mol% via conventional melt-quenching technique. Surface roughness and mechanical properties of the glass sample are characterized and discussed. The ultrasonic attenuation shows the rate of sound energy reduction when an ultrasonic wave is propagating in a medium which is the lithium niobate tellurite glasses. The glass attenuation depends on the grain size, viscous friction, crystal structure, porosity, and hardness. The ultrasonic acoustic impedance and attenuation coefficient of particles are estimated from an analysis of the pulse-echo technique. Simple correlation functions and the accurate scattering theory include the effects of acoustic waves, were used separately to focus on the absorption and scattering effects from spherical particles (Ag NPs) and thereby describe the structures of the medium. |
References |
Abd El-Aal, N. S., & Afifi, H. A. (2009). Structure and ultrasonic properties of vanadium tellurite glasses containing copper oxide. Archives of Acoustics, 34(4), 641-654. Retrieved from www.scopus.com Afifi, H., & Marzouk, S. (2003). Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses. Materials Chemistry and Physics, 80(2), 517-523. doi:10.1016/S0254-0584(03)00099-3 Afifi, H., & Marzouk, S. (2003). Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses. Materials Chemistry and Physics, 80(2), 517-523. doi:10.1016/S0254-0584(03)00099-3 Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974-3983. doi:10.1039/c3ra44507k Alvar, C. E. (2012). Retrieved from www.scopus.com Amendola, V., Bakr, O. M., & Stellacci, F. (2010). A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics, 5(1), 85-97. doi:10.1007/s11468-009-9120-4 Amjad, R. J., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., Riaz, S., & Tahir, B. A. (2012). Enhanced infrared to visible upconversion emission in er 3 doped phosphate glass: Role of silver nanoparticles. Journal of Luminescence, 132(10), 2714-2718. doi:10.1016/j.jlumin.2012.05.008 Awang, A. (2014). Structural and optical properties of erbium doped zinc sodium tellurite glass: Effects of gold nanoparticles. Structural and Optical Properties of Erbium Doped Zinc Sodium Tellurite Glass: Effects of Gold Nanoparticles, Retrieved from www.scopus.com Azianty, S., & Yahya, A. K. (2013). Enhancement of elastic properties by WO3 partial replacement of TeO2 in ternary (80 - X)TeO2-20PbO-xWO3 glass system. Journal of Non-Crystalline Solids, 378, 234-240. doi:10.1016/j.jnoncrysol.2013.07.016 Berke, M., & Hoppenkamps, U. (1990). Nondestructive Material Testing with Ultrasonics Krautkramer Training System Level 1 3, Retrieved from www.scopus.com Bernard, M. (2006). Retrieved from www.scopus.com Bindal, V. N. (2000). Water-based couplants for general purpose use for ultrasonic NDT applications. Journal of Scientific and Industrial Research, 59(11), 935-939. Retrieved from www.scopus.com Chander, S., & Dhaka, M. S. (2015). Optimization of physical properties of vacuum evaporated CdTe thin films with the application of thermal treatment for solar cells. Materials Science in Semiconductor Processing, 40, 708-712. doi:10.1016/j.mssp.2015.07.063 Chowdari, B. V. R., & Pramoda Kumari, P. (1998). Studies on Ag2O.MxOy.TeO2 (MxOy = WO3, MoO3, P2O5 and B2O3) ionic conducting glasses. Solid State Ionics, 113-115, 665-675. doi:10.1016/s0167-2738(98)00393-2 Chung, S. M. (1984). Retrieved from www.scopus.com Damas, P., Coelho, J., Hungerford, G., & Hussain, N. S. (2012). Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides. Materials Research Bulletin, 47(11), 3489-3494. doi:10.1016/j.materresbull.2012.06.071 Don, W. D. (2010). Acoustic Waves, Retrieved from www.scopus.com Drury, J. C. (1984). Ultrasonic Flaw Detection for Technician, 4 Retrieved from www.scopus.com El-Hagary, M., Emam-Ismail, M., Shaaban, E. R., & Shaltout, I. (2009). Optical properties of glasses (TeO2-GeO2-K2O) thin films co-doped with rare earth oxides Sm2O3/Yb2O3. Journal of Alloys and Compounds, 485(1-2), 519-523. doi:10.1016/j.jallcom.2009.06.016 Elkhoshkhany, N., El-Mallawany, R., & Syala, E. (2016). Mechanical and thermal properties of TeO2–Bi2O3–V2O5–Na2O–TiO2 glass system. Ceramics International, 42(16), 19218-19224. doi:10.1016/j.ceramint.2016.09.086 El-Mallawany, R., & Afifi, H. (2013). Elastic moduli and crosslinking of some tellurite glass systems. Materials Chemistry and Physics, 143(1), 11-14. doi:10.1016/j.matchemphys.2013.08.047 Fan, M., & Brolo, A. G. (2008). Self-assembled au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: Optimization and electrochemical stability. ChemPhysChem, 9(13), 1899-1907. doi:10.1002/cphc.200800099 Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6-7), 1242-1247. doi:10.1016/j.physb.2011.01.006 Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6-7), 1242-1247. doi:10.1016/j.physb.2011.01.006 Gayathri Pavani, P., Suresh, S., & Chandra Mouli, V. (2011). Studies on boro cadmium tellurite glasses. Optical Materials, 34(1), 215-220. doi:10.1016/j.optmat.2011.08.016 Gu, X., Raghavan, D., Nguyen, T., VanLandingham, M. R., & Yebassa, D. (2001). Characterization of polyester degradation using tapping mode atomic force microscopy: Exposure to alkaline solution at room temperature. Polymer Degradation and Stability, 74(1), 139-149. doi:10.1016/S0141-3910(01)00138-0 Halimah, M. K., Daud, W. M., Sidek, H. A. A., Zaidan, A. W., & Zainal, A. S. (2010). Optical properties of ternary tellurite glasses. Materials Science- Poland, 28(1), 173-180. Retrieved from www.scopus.com Hutter, E., & Fendler, J. H. (2004). Exploitation of localized surface plasmon resonance. Advanced Materials, 16(19), 1685-1706. doi:10.1002/adma.200400271 Kannappan, A. N., Thirumaran, S., & Palani, R. (2009). Elastic and mechanical properties of glass specimen by ultrasonic method. ARPN J.Eng.Appl.Sci, 4(1), 27-31. Retrieved from www.scopus.com Kažys, R., Tumsys, O., & Pagodinas, D. (2008). A new ultrasonic technique for detection and location of defects in three-layer plastic pipes with a reinforced internal layer. Ultragarsas (Ultrasound), 63(3), 19-27. Retrieved from www.scopus.com Kenneth, A. F., Gerry, M. E., Karen, A. S., & Thomas, J. N. (1997). Theory and application of precision ultrasonic thickness gaging. The Journal of British Institute of Non-Destructive Testing, 2(10), 1-12. Retrieved from www.scopus.com Laopaiboon, R., & Bootjomchai, C. (2015). Characterization of elastic and structural properties of alkali-borosilicate glasses doped with vanadium oxide using ultrasonic technique. Glass Physics and Chemistry, 41(4), 352-358. doi:10.1134/S1087659615040124 Lee, K., Lin, S., Lin, C., Tsai, C., & Lu, Y. (2008). Size effect of ag nanoparticles on surface plasmon resonance. Surface and Coatings Technology, 202(22-23), 5339-5342. doi:10.1016/j.surfcoat.2008.06.080 Lin, J., Huang, W., Sun, Z., Ray, C. S., & Day, D. E. (2004). Structure and non-linear optical performance of TeO2-nb 2O5-ZnO glasses. Journal of Non-Crystalline Solids, 336(3), 189-194. doi:10.1016/j.jnoncrysol.2004.02.007 Lodha, G. S., Yamashita, K., Kunieda, H., Tawara, Y., Yu, J., Namba, Y., & Bennett, J. M. (1998). Effect of surface roughness and subsurface damage on grazing-incidence x-ray scattering and specular reflectance. Applied Optics, 37(22), 5239-5252. doi:10.1364/AO.37.005239 Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A., & Schultz, S. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Journal of Chemical Physics, 116(15), 6755-6759. doi:10.1063/1.1462610 Mohamed, N. B., Yahya, A. K., Deni, M. S. M., Mohamed, S. N., Halimah, M. K., & Sidek, H. A. A. (2010). Effects of concurrent TeO2 reduction and ZnO addition on elastic and structural properties of (90-x)TeO2-10Nb2O 5-(x)ZnO glass. Journal of Non-Crystalline Solids, 356(33-34), 1626-1630. doi:10.1016/j.jnoncrysol.2010.06.031 Mohamed, N. B., Yahya, A. K., Deni, M. S. M., Mohamed, S. N., Halimah, M. K., & Sidek, H. A. A. (2010). Effects of concurrent TeO2 reduction and ZnO addition on elastic and structural properties of (90-x)TeO2-10Nb2O 5-(x)ZnO glass. Journal of Non-Crystalline Solids, 356(33-34), 1626-1630. doi:10.1016/j.jnoncrysol.2010.06.031 Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788-800. doi:10.1021/la9502711 Nanekar, P. P., & Shah, B. K. (2003). Characterization of material properties by ultrasonics. BARC Newsl, 249(249), 25-38. Retrieved from www.scopus.com Narayanan, M. K., & Shashikala, H. D. (2016). Optical absorption, mechanical properties and FTIR studies of silver-doped barium phosphate glasses. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 57(2), 90-96. doi:10.13036/17533562.57.2.040 Nurhafizah, H., Rohani, M. S., & Ghoshal, S. K. (2016). Er3 +:Nd3 + concentration dependent spectral features of lithium-niobate-tellurite amorphous media. Journal of Non-Crystalline Solids, 443, 23-32. doi:10.1016/j.jnoncrysol.2016.04.002 Pan, Z., Ueda, A., Aga Jr., R., Burger, A., Mu, R., & Morgan, S. H. (2010). Spectroscopic studies of Er3+ doped ge-ga-S glass containing silver nanoparticles. Journal of Non-Crystalline Solids, 356(23-24), 1097-1101. doi:10.1016/j.jnoncrysol.2010.04.014 Pantić, M., Mitrovic, S., Babic, M., Jevremovic, D., Kanjevac, T., Dzunic, D., & Adamovic, D. (2015). AFM surface roughness and topography analysis of lithium disilicate glass ceramic. Tribology in Industry, 37(4), 391-399. Retrieved from www.scopus.com Rahman, K. S., Haque, F., Islam, M. A., Alam, M. M., Alothman, Z. A., & Amin, N. (2013). Effect of growth techniques on the properties of CdTe thin films for photovoltaic application. Paper presented at the Proceeding - 2013 IEEE Student Conference on Research and Development, SCOReD 2013, 265-268. doi:10.1109/SCOReD.2013.7002585 Retrieved from www.scopus.com Rajendran, V., Palanivelu, N., Chaudhuri, B. K., & Goswami, K. (2003). Characterisation of semiconducting V2O5-Bi2O3-TeO2 glasses through ultrasonic measurements. Journal of Non-Crystalline Solids, 320(1-3), 195-209. doi:10.1016/S0022-3093(03)00018-8 Rajendran, V., Palanivelu, N., Chaudhuri, B. K., & Goswami, K. (2003). Characterisation of semiconducting V2O5-Bi2O3-TeO2 glasses through ultrasonic measurements. Journal of Non-Crystalline Solids, 320(1-3), 195-209. doi:10.1016/S0022-3093(03)00018-8 Raju, K. V., Raju, C. N., & Reddy, B. S. (2013). Judd-ofelt analysis and photoluminescence properties of RE3+ (RE=Er & nd): Cadmium lithium boro tellurite glasses solid state. Sciences, 15, 102109. Retrieved from www.scopus.com Ramakrishna, P. V., Pammi, S. V. N., & Samatha, K. (2013). UV-visible upconversion studies of Nd3+ ions in lead tellurite glass. Solid State Communications, 155, 21-24. doi:10.1016/j.ssc.2012.10.043 Rao, G. V., & Shashikala, H. D. (2014). Optical, dielectric and mechanical properties of silver nanoparticle embedded calcium phosphate glass. Journal of Non-Crystalline Solids, 402, 204-209. doi:10.1016/j.jnoncrysol.2014.06.007 Ravi, O., Madhukar Reddy, C., Manoj, L., & Deva Prasad Raju, B. (2012). Structural and optical studies of Sm3+ ions doped niobium borotellurite glasses. Journal of Molecular Structure, 1029, 53-59. doi:10.1016/j.molstruc.2012.06.059 Reza Dousti, M., Sahar, M. R., Ghoshal, S. K., Amjad, R. J., & Samavati, A. R. (2013). Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass. Journal of Molecular Structure, 1035, 6-12. doi:10.1016/j.molstruc.2012.09.023 Rivero, C., Stegeman, R., Couzi, M., Talaga, D., Cardinal, T., Richardson, K., & Stegeman, G. (2005). Resolved discrepancies between visible spontaneous raman cross-section and direct near-infrared raman gain measurements in TeO2-based glasses. Optics Express, 13(12), 4759-4769. doi:10.1364/OPEX.13.004759 Robert, L. (2000). The Improvement of Ultrasonic Apparatus for the Routine Inspection of Concrete, Retrieved from www.scopus.com Rozra, J., Saini, I., Aggarwal, S., & Sharma, A. (2013). Spectroscopic analysis of ag nanoparticles embedded in glass. Advanced Materials Letters, 4(8), 598-604. doi:10.5185/amlett.2013.1402 Said Mahraz, Z. A., Sahar, M. R., & Ghoshal, S. K. (2015). Enhanced luminescence from silver nanoparticles integrated Er3+-doped boro-tellurite glasses: Impact of annealing temperature. Journal of Alloys and Compounds, 649, 1102-1109. doi:10.1016/j.jallcom.2015.07.232 Said Mahraz, Z. A., Sahar, M. R., Ghoshal, S. K., & Reza Dousti, M. (2013). Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass. Journal of Luminescence, 144, 139-145. doi:10.1016/j.jlumin.2013.06.050 Sakida, S., Nanba, T., & Miura, Y. (2006). Refractive-index profiles and propagation losses of Er3+-doped tungsten tellurite glass waveguide by ag+-na+ ion-exchange. Materials Letters, 60(28), 3413-3415. doi:10.1016/j.matlet.2006.03.024 Selvaraju, K., & Marimuthu, K. (2013). Structural and spectroscopic studies on concentration dependent sm 3+ doped boro-tellurite glasses. Journal of Alloys and Compounds, 553, 273-281. doi:10.1016/j.jallcom.2012.11.150 Serqueira, E. O., Dantas, N. O., Monte, A. F. G., & Bell, M. J. V. (2006). Judd ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses. Journal of Non-Crystalline Solids, 352(32-35), 3628-3632. doi:10.1016/j.jnoncrysol.2006.03.093 Shannon, R. D., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallogr., 25, 925-946. Retrieved from www.scopus.com Shen, Q., Omar, M., & Dongri, S. (2012). Ultrasonic NDE techniques for impact damage inspection on CFRP laminates. J Mater Sci Res, 1(1), 2-16. Retrieved from www.scopus.com Sidek, H. A. A., Rosmawati, S., Azmi, B. Z., & Shaari, A. H. (2013). Effect of ZnO on the thermal properties of tellurite glass. Advances in Condensed Matter Physics, 2013 doi:10.1155/2013/783207 Smitha, S. L., Nissamudeen, K. M., Philip, D., & Gopchandran, K. G. (2008). Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 71(1), 186-190. doi:10.1016/j.saa.2007.12.002 Sobczyk, M. (2013). Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 119, 128-136. doi:10.1016/j.jqsrt.2012.12.025 Sokolov, V. O., Plotnichenko, V. G., & Koltashev, V. V. (2009). Structure of barium chloride-oxide tellurite glasses. Journal of Non-Crystalline Solids, 355(31-33), 1574-1584. doi:10.1016/j.jnoncrysol.2009.06.017 Som, T., & Karmakar, B. (2009). Nanosilver enhanced upconversion fluorescence of erbium ions in er 3+: Ag-antimony glass nanocomposites. Journal of Applied Physics, 105(1) doi:10.1063/1.3054918 Thirumaran, S., & Jayakumar, J. E. (2014). Ultrasonic and spectroscopic studies on structural elucidation of some vanadium glasses. Research Journal of Physics, 8(1), 1-16. Retrieved from www.scopus.com Thompson, D. O., & Chimenti, D. E. (1993). Ultrasonic Measurement of Pipe Thickness, Retrieved from www.scopus.com Udovica, M., Thomasa, P., Mirgorodskya, A., Massona, O., Merle-Mejeana, T., Lasbrugnasa, C., . . . Hayakawa, T. (2009). Formation domain and characterization of new glasses within the TEO-TiO2-TeO2 system. Materials Research Bulletin, 44, 248253. Retrieved from www.scopus.com Umair, M. M., & Yahya, A. K. (2013). Elastic and structural changes of xNa2O-(35 - X)V 2O5-65TeO2 glass system with increasing sodium. Materials Chemistry and Physics, 142(2-3), 549-555. doi:10.1016/j.matchemphys.2013.07.051 Venkateswara Rao, G., & Shashikala, H. D. (2015). Effect of heat treatment on optical, dielectric and mechanical properties of silver nanoparticle embedded CaOCaF2P2O5 glass. Journal of Alloys and Compounds, 622, 108-114. doi:10.1016/j.jallcom.2014.09.156 Vincenzo, A., Osman, M. B., & Francesco, S. (0000). A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape. Size Structure and Assembly, Plasmonics, 5, 85-97. Retrieved from www.scopus.com Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing doi:10.1146/annurev.physchem.58.032806.104607 Retrieved from www.scopus.com Willets, K. A., & Van Duyne, R. P. (2007). Localized surface plasmon resonance spectroscopy and sensing doi:10.1146/annurev.physchem.58.032806.104607 Retrieved from www.scopus.com Yousef, E., Hotzel, M., & Russel, C. (2004). Linear and non-linear refractive indices of tellurite glasses in the system TeO2-WO3-ZnF2. Journal of Non-Crystalline Solids, 342(1-3), 82-88. doi:10.1016/j.jnoncrysol.2004.07.003 Yousef, E. S., Elokr, M. M., & Aboudeif, Y. M. (2016). Optical, elastic properties and DTA of TNZP host tellurite glasses doped with Er3+ ions. Journal of Molecular Structure, 1108, 257-262. doi:10.1016/j.molstruc.2015.11.066 Yusoff, N. M., & Sahar, M. R. (2015). Effect of silver nanoparticles incorporated with samarium-doped magnesium tellurite glasses. Physica B: Condensed Matter, 456, 191-196. doi:10.1016/j.physb.2014.08.039 Zakaria, R., Hamdan, K. S., Noh, S. M. C., Supangat, A., & Sookhakian, M. (2015). Surface plasmon resonance and photoluminescence studies of au and ag micro-flowers. Opt.Soc.Am., , 1-8. Retrieved from www.scopus.com Zawrah, M. F., Essawy, R. A., Zayed, H. A., Abdel Fattah, A. H., & Taha, M. A. (2014). Mechanical alloying, sintering and characterization of Al2O 3-20 wt%-cu nanocomposite. Ceramics International, 40(1 PART A), 31-38. doi:10.1016/j.ceramint.2013.05.099 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |