UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :QC Physics
ISSN :2211-3797
Main Author :Mohd Azlan Nafiah
Title :Effects of Na2O on optical and radiation shielding properties of xNa2O-(20-x)K2O-30V2O5-50TeO2 mixed alkali glasses
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Results in Physics
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
In this study, the optical and gamma ray shielding properties of vanadotellurite-based quaternary glasses in the xNa2O-(20-x)K2O-30V2O5-50TeO2 system were examined. The optical band gap (Eopt) displayed an initial reduction from 2.33 to 2.30 eV (x ≤ 10 mol%), before increasing from 2.31 to 2.39 eV for x > 10 mol%, which indicated a change in non-bridging oxygen (NBO) concentration. There is an inverse relationship between Urbach energy (Eu) and Eopt. The refractive index (n) also showed an off-trend pattern within the same area (x = 10 mol%), which indicated a difference in polarizability due to changes in BO and NBO concentrations. The Phy-X software was used to analyse the radiation attenuation competence for the investigated glass systems. For the total interaction of photons between the 0.284 to 2.506 MeV energy range, the linear attenuation coefficients (LAC), the radiation protection efficiency (RPE), half-value layers (HVL) and mean free path (MFP) were determined. The increased Na2O content increased the values of LAC and RPE. The results demonstrated that the 20Na2O-30V2O5-50TeO2 composition had the most desired photon shielding properties.

References

(2002). 2 Retrieved from www.scopus.com

Abd El-Moneim, A. (2002). DTA and IR absorption spectra of vanadium tellurite glasses. Materials Chemistry and Physics, 73(2-3), 318-322. doi:10.1016/S0254-0584(01)00355-8

Agarwal, A., Seth, V. P., Sanghi, S., Gahlot, P., & Khasa, S. (2004). Mixed alkali effect in optical properties of lithium-potassium bismuth borate glass system. Materials Letters, 58(5), 694-698. doi:10.1016/j.matlet.2003.06.007

Al-Buriahi, M. S., El-Agawany, F. I., Sriwunkum, C., Akyıldırım, H., Arslan, H., Tonguc, B. T., . . . Rammah, Y. S. (2020). Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica B: Condensed Matter, 581 doi:10.1016/j.physb.2019.411946

AlBuriahi, M. S., Hegazy, H. H., Alresheedi, F., Olarinoye, I. O., Algarni, H., Tekin, H. O., & Saudi, H. A. (2021). Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceramics International, 47(5), 5951-5958. doi:10.1016/j.ceramint.2020.10.168

Al-Buriahi, M. S., & Singh, V. P. (2020). Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. Journal of the Australian Ceramic Society, 56(3), 1127-1133. doi:10.1007/s41779-020-00457-1

Al-Buriahi, M. S., Somaily, H. H., Alalawis, A., & Polarizability, S. A. (2020). Optical basicity, and photon attenuation properties of ag 2 O–MoO 3 –V 2 O 5 –TeO 2 glasses: The role of silver oxide. J.Inorg.Organomet.Polym Mater, , 1-10. Retrieved from www.scopus.com

Al-Buriahi, M. S., Sriwunkum, C., Arslan, H., Tonguc, B. T., & Bourham, M. A. (2020). Investigation of barium borate glasses for radiation shielding applications. Applied Physics A: Materials Science and Processing, 126(1) doi:10.1007/s00339-019-3254-9

Al-Hadeethi, Y., Al-Buriahi, M. S., & Sayyed, M. I. (2020). Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceramics International, 46(4), 5306-5314. doi:10.1016/j.ceramint.2019.10.281

Al-Hadeethi, Y., Sayyed, M. I., Mohammed, H., & Rimondini, L. (2020). X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceramics International, 46(1), 251-257. doi:10.1016/j.ceramint.2019.08.258

Al-Hadeethi, Y., Sayyed, M. I., & Rammah, Y. S. (2020). Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceramics International, 46(2), 2055-2062. doi:10.1016/j.ceramint.2019.09.185

Arya, S. K., Danewalia, S. S., Arora, M., & Singh, K. (2016). Effect of variable oxidation states of vanadium on the structural, optical, and dielectric properties of B2O3-Li2O-ZnO-V2O5 glasses. Journal of Physical Chemistry B, 120(47), 12168-12176. doi:10.1021/acs.jpcb.6b08285

Ashwajeet, J. S., Sanakarappa, T., Ramanna, R., & Sujtha, T. (2015). Dielectric and AC conductivity studies in two alkali doped borophosphate glasses. Journal of Chemistry and Materials Research, 4(1), 2-5. Retrieved from www.scopus.com

Bhat, M. H., Ganguli, M., & Rao, K. J. (2004). Investigation of the mixed alkali effect in boro-tellurite glasses - the role of NBO-BO switching in ion transport. Current Science, 86(5), 676-691. Retrieved from www.scopus.com

Boukhris, I., Kebaili, I., Al-Buriahi, M. S., Sriwunkum, C., & Sayyed, M. I. (2020). Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses. Applied Physics A: Materials Science and Processing, 126(10) doi:10.1007/s00339-020-03932-5

Calahoo, C., Xia, Y., & Zhou, R. (2020). Influence of glass network ionicity on the mixed-alkali effect. International Journal of Applied Glass Science, 11(3), 396-414. doi:10.1111/ijag.15546

Chen, Q., Su, K., Zhao, Z., & Ma, Q. (2018). Optical and electrical properties of SeO2 modified PbO-Bi2O3-B2O3 glasses. Journal of Non-Crystalline Solids, 498, 448-454. doi:10.1016/j.jnoncrysol.2018.02.004

Dimitrov, V., & Komatsu, T. (2010). An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J.Univ.Chem.Technol.Metall., 45(3), 219-250. Retrieved from www.scopus.com

Dimitrov, V., & Komatsu, T. (2013). Electronic polarizability, optical basicity and single bond strength of oxide glasses. Journal of Chemical Technology and Metallurgy, 48(6), 549-554. Retrieved from www.scopus.com

Edukondalu, A., Purnima, M., Srinivasy, C., Sripathi, T., Awasthi, A. M., Rahman, S., & Kumar, K. S. (2012). Mixed alkali effect in physical and optical properties of li 2O-na 2O-WO 3-B 2O 3 glasses. Journal of Non-Crystalline Solids, 358(18-19), 2581-2588. doi:10.1016/j.jnoncrysol.2012.06.004

Edukondalu, A., Sripathi, T., Kareem Ahmmad, S., Rahman, S., & Sivakumar, K. (2017). Optical properties of K2O-Li2O-WO3-B2O3 glasses: Evidence of mixed alkali effect. Journal of Electronic Materials, 46(2), 808-816. doi:10.1007/s11664-016-4949-8

El-Mallawany, R. (2002). Retrieved from www.scopus.com

El-Mallawany, R. (2003). Glass transformation temperature and stability of tellurite glasses. Journal of Materials Research, 18(2), 402-406. doi:10.1557/JMR.2003.0051

El-Mallawany, R. (2000). Specific heat capacity of semiconducting glasses: Binary vanadium tellurite. Physica Status Solidi (A) Applied Research, 177(2), 439-444. doi:10.1002/(SICI)1521-396X(200002)177:2<439::AID-PSSA439>3.0.CO;2-B

Farhan, S. H. (2017). Study of some physical and optical properties of Bi2O3 TeO2 V2O5 glasses. Aust.J.Basic Appl.Sci, 11(9), 171-178. Retrieved from www.scopus.com

Gao, Y. (2006). Mixed cation effect in 0.3[xLi2O(1 - X) R2O] 0.7B2O3 (R = na, K, rb) glasses. Chemical Physics Letters, 417(4-6), 430-433. doi:10.1016/j.cplett.2005.10.054

Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6-7), 1242-1247. doi:10.1016/j.physb.2011.01.006

Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom - A program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654. doi:10.1016/j.radphyschem.2004.04.040

Ghosh, S., & Ghosh, A. (2007). Electrical conductivity and relaxation in mixed alkali tellurite glasses. Journal of Chemical Physics, 126(18) doi:10.1063/1.2730818

Hisam, R., & Yahya, A. K. (2016). Anomalous behaviors of elastic moduli, DC conductivity and optical properties in mixed transition–metal–ion (20-x) MnO2–xFe2O3–80TeO2 tellurite glass system. Chalcogenide Letters, 13(4), 145-160. Retrieved from www.scopus.com

Ibrahim, A. M., Hammad, A. H., Abdelghany, A. M., & Rabie, G. O. (2018). Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass. Journal of Non-Crystalline Solids, 495, 67-74. doi:10.1016/j.jnoncrysol.2018.05.015

Ismail, M., Supardan, S. N., Yahya, A. K., & Abd-Shukor, R. (2015). Optical properties and weakening of elastic moduli with increasing glass transition temperature (tg) in (80-x)TeO2-xBaO-20ZnO glasses. International Journal of Materials Research, 106(8), 893-901. doi:10.3139/146.111250

Japari, S. J., Yahya, A. K., & Hisam, R. (2020). Effects of mixed-alkali oxides on AC conductivity and dielectric properties of xNa2O-(20-x)K2O-30V2O5-50TeO2 glasses. Results in Physics, 16 doi:10.1016/j.rinp.2019.102905

Kalampounias, A. G., & Boghosian, S. (2012). Distribution of tellurite polymorphs in the xM 2O-(1 - X)TeO 2 (M = li, na, K, cs, and rb) binary glasses using raman spectroscopy. Vibrational Spectroscopy, 59, 18-22. doi:10.1016/j.vibspec.2011.12.013

Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P., & Chewpraditkul, W. (2011). Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. Journal of Physics and Chemistry of Solids, 72(4), 245-251. doi:10.1016/j.jpcs.2011.01.007

Lopez, R., & Gomez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO 2: A comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1-7. doi:10.1007/s10971-011-2582-9

Mann, K. S., & Mann, S. S. (2021). Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. Annals of Nuclear Energy, 150 doi:10.1016/j.anucene.2020.107845

Mehrer, H., Imre, A. W., & Tanguep-Nijokep, E. (2008). Diffusion and ionic conduction in oxide glasses. Journal of Physics: Conference Series, 106(1) doi:10.1088/1742-6596/106/1/012001

Mohamed, E. A., Ahmad, F., & Aly, K. A. (2012). Effect of lithium addition on thermal and optical properties of zinc-tellurite glass. Journal of Alloys and Compounds, 538, 230-236. doi:10.1016/j.jallcom.2012.05.044

Mohamed, S. N., & Yahya, A. K. (2018). Effects of V2O5 on elastic, structural, and optical properties of mixed ionic–electronic 20Na2O–20CaO–(60 − x)B2O3–xV2O5 glasses. Ionics, 24(9), 2647-2664. doi:10.1007/s11581-017-2396-z

Mohd Fudzi, F., Kamari, H. M., Abd Latif, A., & Muhammad Noorazlan, A. (2017). Linear optical properties of zinc borotellurite glass doped with lanthanum oxide nanoparticles for optoelectronic and photonic application. Journal of Nanomaterials, 2017 doi:10.1155/2017/4150802

Naseer, K. A., Marimuthu, K., Al-Buriahi, M. S., Alalawi, A., & Tekin, H. O. (2021). Influence of Bi2O3 concentration on barium-telluro-borate glasses: Physical, structural and radiation-shielding properties. Ceramics International, 47(1), 329-340. doi:10.1016/j.ceramint.2020.08.138

Niyaz Ahamad, M., & Varma, K. B. R. (2006). Crystallisation, dielectric and optical characteristics of TeO 2-K2O-Li2O-Nb2O5 glasses. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 47(6), 659-664. Retrieved from www.scopus.com

Olarinoye, I. O., El-Agawany, F. I., El-Adawy, A., Yousef, E. S., & Rammah, Y. S. (2020). Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceramics International, 46(14), 23134-23144. doi:10.1016/j.ceramint.2020.06.093

Padmaja, G., & Kistaiah, P. (2010). Optical absorption and EPR spectroscopic studies of (30 - X)li 2O-xK2O-10CdO-59B2O3-1Fe 2O3: An evidence for mixed alkali effect. Solid State Sciences, 12(12), 2015-2019. doi:10.1016/j.solidstatesciences.2010.08.019

Qi, J., Xue, D., Ratajczak, H., & Ning, G. (2004). Electronic polarizability of the oxide ion and density of binary silicate, borate and phosphate oxide glasses. Physica B: Condensed Matter, 349(1-4), 265-269. doi:10.1016/j.physb.2004.03.307

Rammah, Y. S. (2019). Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3. Applied Physics A: Materials Science and Processing, 125(12) doi:10.1007/s00339-019-3154-z

Rim, Y., Kim, M., Kim, J. E., & Yang, Y. S. (2013). Ionic transport in mixed-alkali glasses: Hop through the distinctly different conduction pathways of low dimensionality. New Journal of Physics, 15 doi:10.1088/1367-2630/15/2/023005

Saddeek, Y. B., Aly, K. A., Dahshan, A., & Kashef, I. M. E. (2010). Optical properties of the Na2O-B2O3-Bi2O3-MoO3 glasses. Journal of Alloys and Compounds, 494(1-2), 210-213. doi:10.1016/j.jallcom.2009.11.123

Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166 doi:10.1016/j.radphyschem.2019.108496

Samee, M. S., Ahmad, S. K., Sair, M. D., Taqiullah, A. E., Bale, S., & Rahman, S. (2013). Md., edukondalu, A., bale, S., and rahman, S., mixed alkali effect in (40 – x)K2O–xLi2O–10Na2O–50B2O3 glasses-physical and optical absorption studies. Int.J.Modern Phys.: Conf.Ser., 22, 261-267. Retrieved from www.scopus.com

Sayyed, M. I., Mohammed, F. Q., Mahmoud, K. A., Lacomme, E., Kaky, K. M., Khandaker, M. U., & Faruque, M. R. I. (2020). Evaluation of radiation shielding features of co and ni-based superalloys using mcnp-5 code: Potential use in nuclear safety. Applied Sciences (Switzerland), 10(21), 1-14. doi:10.3390/app10217680

Sayyed, M. I., Rashad, M., & Rammah, Y. S. (2020). Impact of Ag2O on linear, nonlinear optical and gamma-ray shielding features of ternary silver vanadio-tellurite glasses: TeO2–V2O5–Ag2O. Ceramics International, 46(14), 22964-22972. doi:10.1016/j.ceramint.2020.06.071

Shen, J., Li, Y., & He, J. -. (2016). On the kubelka-munk absorption coefficient. Dyes and Pigments, 127, 187-188. doi:10.1016/j.dyepig.2015.11.029

Sidkey, M. A., & Gaafar, M. S. (2004). Ultrasonic studies on network structure of ternary TeO2-WO 3-K2O glass system. Physica B: Condensed Matter, 348(1-4), 46-55. doi:10.1016/j.physb.2003.11.005

Soulis, M., Mirgorodsky, A. P., Merle-Méjean, T., Masson, O., Thomas, P., & Udovic, M. (2008). The role of modifier's cation valence in structural properties of TeO2-based glasses. Journal of Non-Crystalline Solids, 354(2-9), 143-149. doi:10.1016/j.jnoncrysol.2007.07.032

Sreekanth Chakradhar, R. P., Ramesh, K. P., Rao, J. L., & Ramakrishna, J. (2003). Mixed alkali effect in borate glasses - EPR and optical absorption studies in xNa2O-(30 - x)K2O-70B2O3 glasses doped with Mn2+. Journal of Physics and Chemistry of Solids, 64(4), 641-650. doi:10.1016/S0022-3697(02)00365-7

Tijani, S. A., Kamal, S. M., Al-Hadeethi, Y., Arib, M., Hussein, M. A., Wageh, S., & Dim, L. A. (2018). Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. Journal of Alloys and Compounds, 741, 293-299. doi:10.1016/j.jallcom.2018.01.109

Tsuchida, J. E., Ferri, F. A., Pizani, P. S., Martins Rodrigues, A. C., Kundu, S., Schneider, J. F., & Zanotto, E. D. (2017). Ionic conductivity and mixed-ion effect in mixed alkali metaphosphate glasses. Physical Chemistry Chemical Physics, 19(9), 6594-6600. doi:10.1039/c6cp07876a

Umair, M. M., & Yahya, A. K. (2015). Effect of Nb2O5 network stabilizer on elastic and optical properties of xNb2O5-(20-x)BaO-80TeO2 tellurite glass system. Chalcogenide Letters, 12(6), 287-300. Retrieved from www.scopus.com

Umair, M. M., & Yahya, A. K. (2013). Elastic and structural changes of xNa2O-(35 - X)V 2O5-65TeO2 glass system with increasing sodium. Materials Chemistry and Physics, 142(2-3), 549-555. doi:10.1016/j.matchemphys.2013.07.051

Umair, M. M., Yahya, A. K., Halimah, M. K., & Sidek, H. A. A. (2015). Effects of increasing tungsten on structural, elastic and optical properties of xWO3-(40-x)Ag2O-60Te2O glass system. Journal of Materials Science and Technology, 31(1), 83-90. doi:10.1016/j.jmst.2014.10.002

Yadav, A. K., Jha, P. A., Murugavel, S., & Singh, P. (2016). Synthesis, characterization and AC conductivity of alkali metal substituted telluride glasses. Solid State Ionics, 296, 54-62. doi:10.1016/j.ssi.2016.08.013

Yasmin, S., Barua, B. S., Khandaker, M. U., Chowdhury, F., Rashid, M. A., Bradley, D. A., . . . Kamal, M. (2018). Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in bangladeshi dwellings. Results in Physics, 9, 541-549. doi:10.1016/j.rinp.2018.02.075

Yasmin, S., Rozaila, Z. S., Khandaker, M. U., Barua, B. S., Chowdhury, F., Rashid, M. A., & Bradley, D. A. (2018). The radiation shielding offered by the commercial glass installed in bangladeshi dwellings. Radiation Effects and Defects in Solids, 173(7-8), 657-672. doi:10.1080/10420150.2018.1493481


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.