UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In this study, the optical and gamma ray shielding properties of vanadotellurite-based quaternary glasses in the xNa2O-(20-x)K2O-30V2O5-50TeO2 system were examined. The optical band gap (Eopt) displayed an initial reduction from 2.33 to 2.30 eV (x ≤ 10 mol%), before increasing from 2.31 to 2.39 eV for x > 10 mol%, which indicated a change in non-bridging oxygen (NBO) concentration. There is an inverse relationship between Urbach energy (Eu) and Eopt. The refractive index (n) also showed an off-trend pattern within the same area (x = 10 mol%), which indicated a difference in polarizability due to changes in BO and NBO concentrations. The Phy-X software was used to analyse the radiation attenuation competence for the investigated glass systems. For the total interaction of photons between the 0.284 to 2.506 MeV energy range, the linear attenuation coefficients (LAC), the radiation protection efficiency (RPE), half-value layers (HVL) and mean free path (MFP) were determined. The increased Na2O content increased the values of LAC and RPE. The results demonstrated that the 20Na2O-30V2O5-50TeO2 composition had the most desired photon shielding properties. |
References |
(2002). 2 Retrieved from www.scopus.com Abd El-Moneim, A. (2002). DTA and IR absorption spectra of vanadium tellurite glasses. Materials Chemistry and Physics, 73(2-3), 318-322. doi:10.1016/S0254-0584(01)00355-8 Agarwal, A., Seth, V. P., Sanghi, S., Gahlot, P., & Khasa, S. (2004). Mixed alkali effect in optical properties of lithium-potassium bismuth borate glass system. Materials Letters, 58(5), 694-698. doi:10.1016/j.matlet.2003.06.007 Al-Buriahi, M. S., El-Agawany, F. I., Sriwunkum, C., Akyıldırım, H., Arslan, H., Tonguc, B. T., . . . Rammah, Y. S. (2020). Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica B: Condensed Matter, 581 doi:10.1016/j.physb.2019.411946 AlBuriahi, M. S., Hegazy, H. H., Alresheedi, F., Olarinoye, I. O., Algarni, H., Tekin, H. O., & Saudi, H. A. (2021). Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceramics International, 47(5), 5951-5958. doi:10.1016/j.ceramint.2020.10.168 Al-Buriahi, M. S., & Singh, V. P. (2020). Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. Journal of the Australian Ceramic Society, 56(3), 1127-1133. doi:10.1007/s41779-020-00457-1 Al-Buriahi, M. S., Somaily, H. H., Alalawis, A., & Polarizability, S. A. (2020). Optical basicity, and photon attenuation properties of ag 2 O–MoO 3 –V 2 O 5 –TeO 2 glasses: The role of silver oxide. J.Inorg.Organomet.Polym Mater, , 1-10. Retrieved from www.scopus.com Al-Buriahi, M. S., Sriwunkum, C., Arslan, H., Tonguc, B. T., & Bourham, M. A. (2020). Investigation of barium borate glasses for radiation shielding applications. Applied Physics A: Materials Science and Processing, 126(1) doi:10.1007/s00339-019-3254-9 Al-Hadeethi, Y., Al-Buriahi, M. S., & Sayyed, M. I. (2020). Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceramics International, 46(4), 5306-5314. doi:10.1016/j.ceramint.2019.10.281 Al-Hadeethi, Y., Sayyed, M. I., Mohammed, H., & Rimondini, L. (2020). X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceramics International, 46(1), 251-257. doi:10.1016/j.ceramint.2019.08.258 Al-Hadeethi, Y., Sayyed, M. I., & Rammah, Y. S. (2020). Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceramics International, 46(2), 2055-2062. doi:10.1016/j.ceramint.2019.09.185 Arya, S. K., Danewalia, S. S., Arora, M., & Singh, K. (2016). Effect of variable oxidation states of vanadium on the structural, optical, and dielectric properties of B2O3-Li2O-ZnO-V2O5 glasses. Journal of Physical Chemistry B, 120(47), 12168-12176. doi:10.1021/acs.jpcb.6b08285 Ashwajeet, J. S., Sanakarappa, T., Ramanna, R., & Sujtha, T. (2015). Dielectric and AC conductivity studies in two alkali doped borophosphate glasses. Journal of Chemistry and Materials Research, 4(1), 2-5. Retrieved from www.scopus.com Bhat, M. H., Ganguli, M., & Rao, K. J. (2004). Investigation of the mixed alkali effect in boro-tellurite glasses - the role of NBO-BO switching in ion transport. Current Science, 86(5), 676-691. Retrieved from www.scopus.com Boukhris, I., Kebaili, I., Al-Buriahi, M. S., Sriwunkum, C., & Sayyed, M. I. (2020). Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses. Applied Physics A: Materials Science and Processing, 126(10) doi:10.1007/s00339-020-03932-5 Calahoo, C., Xia, Y., & Zhou, R. (2020). Influence of glass network ionicity on the mixed-alkali effect. International Journal of Applied Glass Science, 11(3), 396-414. doi:10.1111/ijag.15546 Chen, Q., Su, K., Zhao, Z., & Ma, Q. (2018). Optical and electrical properties of SeO2 modified PbO-Bi2O3-B2O3 glasses. Journal of Non-Crystalline Solids, 498, 448-454. doi:10.1016/j.jnoncrysol.2018.02.004 Dimitrov, V., & Komatsu, T. (2010). An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J.Univ.Chem.Technol.Metall., 45(3), 219-250. Retrieved from www.scopus.com Dimitrov, V., & Komatsu, T. (2013). Electronic polarizability, optical basicity and single bond strength of oxide glasses. Journal of Chemical Technology and Metallurgy, 48(6), 549-554. Retrieved from www.scopus.com Edukondalu, A., Purnima, M., Srinivasy, C., Sripathi, T., Awasthi, A. M., Rahman, S., & Kumar, K. S. (2012). Mixed alkali effect in physical and optical properties of li 2O-na 2O-WO 3-B 2O 3 glasses. Journal of Non-Crystalline Solids, 358(18-19), 2581-2588. doi:10.1016/j.jnoncrysol.2012.06.004 Edukondalu, A., Sripathi, T., Kareem Ahmmad, S., Rahman, S., & Sivakumar, K. (2017). Optical properties of K2O-Li2O-WO3-B2O3 glasses: Evidence of mixed alkali effect. Journal of Electronic Materials, 46(2), 808-816. doi:10.1007/s11664-016-4949-8 El-Mallawany, R. (2002). Retrieved from www.scopus.com El-Mallawany, R. (2003). Glass transformation temperature and stability of tellurite glasses. Journal of Materials Research, 18(2), 402-406. doi:10.1557/JMR.2003.0051 El-Mallawany, R. (2000). Specific heat capacity of semiconducting glasses: Binary vanadium tellurite. Physica Status Solidi (A) Applied Research, 177(2), 439-444. doi:10.1002/(SICI)1521-396X(200002)177:2<439::AID-PSSA439>3.0.CO;2-B Farhan, S. H. (2017). Study of some physical and optical properties of Bi2O3 TeO2 V2O5 glasses. Aust.J.Basic Appl.Sci, 11(9), 171-178. Retrieved from www.scopus.com Gao, Y. (2006). Mixed cation effect in 0.3[xLi2O(1 - X) R2O] 0.7B2O3 (R = na, K, rb) glasses. Chemical Physics Letters, 417(4-6), 430-433. doi:10.1016/j.cplett.2005.10.054 Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6-7), 1242-1247. doi:10.1016/j.physb.2011.01.006 Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom - A program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3-4), 653-654. doi:10.1016/j.radphyschem.2004.04.040 Ghosh, S., & Ghosh, A. (2007). Electrical conductivity and relaxation in mixed alkali tellurite glasses. Journal of Chemical Physics, 126(18) doi:10.1063/1.2730818 Hisam, R., & Yahya, A. K. (2016). Anomalous behaviors of elastic moduli, DC conductivity and optical properties in mixed transition–metal–ion (20-x) MnO2–xFe2O3–80TeO2 tellurite glass system. Chalcogenide Letters, 13(4), 145-160. Retrieved from www.scopus.com Ibrahim, A. M., Hammad, A. H., Abdelghany, A. M., & Rabie, G. O. (2018). Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass. Journal of Non-Crystalline Solids, 495, 67-74. doi:10.1016/j.jnoncrysol.2018.05.015 Ismail, M., Supardan, S. N., Yahya, A. K., & Abd-Shukor, R. (2015). Optical properties and weakening of elastic moduli with increasing glass transition temperature (tg) in (80-x)TeO2-xBaO-20ZnO glasses. International Journal of Materials Research, 106(8), 893-901. doi:10.3139/146.111250 Japari, S. J., Yahya, A. K., & Hisam, R. (2020). Effects of mixed-alkali oxides on AC conductivity and dielectric properties of xNa2O-(20-x)K2O-30V2O5-50TeO2 glasses. Results in Physics, 16 doi:10.1016/j.rinp.2019.102905 Kalampounias, A. G., & Boghosian, S. (2012). Distribution of tellurite polymorphs in the xM 2O-(1 - X)TeO 2 (M = li, na, K, cs, and rb) binary glasses using raman spectroscopy. Vibrational Spectroscopy, 59, 18-22. doi:10.1016/j.vibspec.2011.12.013 Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P., & Chewpraditkul, W. (2011). Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. Journal of Physics and Chemistry of Solids, 72(4), 245-251. doi:10.1016/j.jpcs.2011.01.007 Lopez, R., & Gomez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO 2: A comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1-7. doi:10.1007/s10971-011-2582-9 Mann, K. S., & Mann, S. S. (2021). Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. Annals of Nuclear Energy, 150 doi:10.1016/j.anucene.2020.107845 Mehrer, H., Imre, A. W., & Tanguep-Nijokep, E. (2008). Diffusion and ionic conduction in oxide glasses. Journal of Physics: Conference Series, 106(1) doi:10.1088/1742-6596/106/1/012001 Mohamed, E. A., Ahmad, F., & Aly, K. A. (2012). Effect of lithium addition on thermal and optical properties of zinc-tellurite glass. Journal of Alloys and Compounds, 538, 230-236. doi:10.1016/j.jallcom.2012.05.044 Mohamed, S. N., & Yahya, A. K. (2018). Effects of V2O5 on elastic, structural, and optical properties of mixed ionic–electronic 20Na2O–20CaO–(60 − x)B2O3–xV2O5 glasses. Ionics, 24(9), 2647-2664. doi:10.1007/s11581-017-2396-z Mohd Fudzi, F., Kamari, H. M., Abd Latif, A., & Muhammad Noorazlan, A. (2017). Linear optical properties of zinc borotellurite glass doped with lanthanum oxide nanoparticles for optoelectronic and photonic application. Journal of Nanomaterials, 2017 doi:10.1155/2017/4150802 Naseer, K. A., Marimuthu, K., Al-Buriahi, M. S., Alalawi, A., & Tekin, H. O. (2021). Influence of Bi2O3 concentration on barium-telluro-borate glasses: Physical, structural and radiation-shielding properties. Ceramics International, 47(1), 329-340. doi:10.1016/j.ceramint.2020.08.138 Niyaz Ahamad, M., & Varma, K. B. R. (2006). Crystallisation, dielectric and optical characteristics of TeO 2-K2O-Li2O-Nb2O5 glasses. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 47(6), 659-664. Retrieved from www.scopus.com Olarinoye, I. O., El-Agawany, F. I., El-Adawy, A., Yousef, E. S., & Rammah, Y. S. (2020). Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceramics International, 46(14), 23134-23144. doi:10.1016/j.ceramint.2020.06.093 Padmaja, G., & Kistaiah, P. (2010). Optical absorption and EPR spectroscopic studies of (30 - X)li 2O-xK2O-10CdO-59B2O3-1Fe 2O3: An evidence for mixed alkali effect. Solid State Sciences, 12(12), 2015-2019. doi:10.1016/j.solidstatesciences.2010.08.019 Qi, J., Xue, D., Ratajczak, H., & Ning, G. (2004). Electronic polarizability of the oxide ion and density of binary silicate, borate and phosphate oxide glasses. Physica B: Condensed Matter, 349(1-4), 265-269. doi:10.1016/j.physb.2004.03.307 Rammah, Y. S. (2019). Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3. Applied Physics A: Materials Science and Processing, 125(12) doi:10.1007/s00339-019-3154-z Rim, Y., Kim, M., Kim, J. E., & Yang, Y. S. (2013). Ionic transport in mixed-alkali glasses: Hop through the distinctly different conduction pathways of low dimensionality. New Journal of Physics, 15 doi:10.1088/1367-2630/15/2/023005 Saddeek, Y. B., Aly, K. A., Dahshan, A., & Kashef, I. M. E. (2010). Optical properties of the Na2O-B2O3-Bi2O3-MoO3 glasses. Journal of Alloys and Compounds, 494(1-2), 210-213. doi:10.1016/j.jallcom.2009.11.123 Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166 doi:10.1016/j.radphyschem.2019.108496 Samee, M. S., Ahmad, S. K., Sair, M. D., Taqiullah, A. E., Bale, S., & Rahman, S. (2013). Md., edukondalu, A., bale, S., and rahman, S., mixed alkali effect in (40 – x)K2O–xLi2O–10Na2O–50B2O3 glasses-physical and optical absorption studies. Int.J.Modern Phys.: Conf.Ser., 22, 261-267. Retrieved from www.scopus.com Sayyed, M. I., Mohammed, F. Q., Mahmoud, K. A., Lacomme, E., Kaky, K. M., Khandaker, M. U., & Faruque, M. R. I. (2020). Evaluation of radiation shielding features of co and ni-based superalloys using mcnp-5 code: Potential use in nuclear safety. Applied Sciences (Switzerland), 10(21), 1-14. doi:10.3390/app10217680 Sayyed, M. I., Rashad, M., & Rammah, Y. S. (2020). Impact of Ag2O on linear, nonlinear optical and gamma-ray shielding features of ternary silver vanadio-tellurite glasses: TeO2–V2O5–Ag2O. Ceramics International, 46(14), 22964-22972. doi:10.1016/j.ceramint.2020.06.071 Shen, J., Li, Y., & He, J. -. (2016). On the kubelka-munk absorption coefficient. Dyes and Pigments, 127, 187-188. doi:10.1016/j.dyepig.2015.11.029 Sidkey, M. A., & Gaafar, M. S. (2004). Ultrasonic studies on network structure of ternary TeO2-WO 3-K2O glass system. Physica B: Condensed Matter, 348(1-4), 46-55. doi:10.1016/j.physb.2003.11.005 Soulis, M., Mirgorodsky, A. P., Merle-Méjean, T., Masson, O., Thomas, P., & Udovic, M. (2008). The role of modifier's cation valence in structural properties of TeO2-based glasses. Journal of Non-Crystalline Solids, 354(2-9), 143-149. doi:10.1016/j.jnoncrysol.2007.07.032 Sreekanth Chakradhar, R. P., Ramesh, K. P., Rao, J. L., & Ramakrishna, J. (2003). Mixed alkali effect in borate glasses - EPR and optical absorption studies in xNa2O-(30 - x)K2O-70B2O3 glasses doped with Mn2+. Journal of Physics and Chemistry of Solids, 64(4), 641-650. doi:10.1016/S0022-3697(02)00365-7 Tijani, S. A., Kamal, S. M., Al-Hadeethi, Y., Arib, M., Hussein, M. A., Wageh, S., & Dim, L. A. (2018). Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. Journal of Alloys and Compounds, 741, 293-299. doi:10.1016/j.jallcom.2018.01.109 Tsuchida, J. E., Ferri, F. A., Pizani, P. S., Martins Rodrigues, A. C., Kundu, S., Schneider, J. F., & Zanotto, E. D. (2017). Ionic conductivity and mixed-ion effect in mixed alkali metaphosphate glasses. Physical Chemistry Chemical Physics, 19(9), 6594-6600. doi:10.1039/c6cp07876a Umair, M. M., & Yahya, A. K. (2015). Effect of Nb2O5 network stabilizer on elastic and optical properties of xNb2O5-(20-x)BaO-80TeO2 tellurite glass system. Chalcogenide Letters, 12(6), 287-300. Retrieved from www.scopus.com Umair, M. M., & Yahya, A. K. (2013). Elastic and structural changes of xNa2O-(35 - X)V 2O5-65TeO2 glass system with increasing sodium. Materials Chemistry and Physics, 142(2-3), 549-555. doi:10.1016/j.matchemphys.2013.07.051 Umair, M. M., Yahya, A. K., Halimah, M. K., & Sidek, H. A. A. (2015). Effects of increasing tungsten on structural, elastic and optical properties of xWO3-(40-x)Ag2O-60Te2O glass system. Journal of Materials Science and Technology, 31(1), 83-90. doi:10.1016/j.jmst.2014.10.002 Yadav, A. K., Jha, P. A., Murugavel, S., & Singh, P. (2016). Synthesis, characterization and AC conductivity of alkali metal substituted telluride glasses. Solid State Ionics, 296, 54-62. doi:10.1016/j.ssi.2016.08.013 Yasmin, S., Barua, B. S., Khandaker, M. U., Chowdhury, F., Rashid, M. A., Bradley, D. A., . . . Kamal, M. (2018). Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in bangladeshi dwellings. Results in Physics, 9, 541-549. doi:10.1016/j.rinp.2018.02.075 Yasmin, S., Rozaila, Z. S., Khandaker, M. U., Barua, B. S., Chowdhury, F., Rashid, M. A., & Bradley, D. A. (2018). The radiation shielding offered by the commercial glass installed in bangladeshi dwellings. Radiation Effects and Defects in Solids, 173(7-8), 657-672. doi:10.1080/10420150.2018.1493481 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |