UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science
ISSN :2238-7854
Main Author :Ismail Zainol
Title :Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Materials Research and Technology
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
The effects of rubber toughened epoxy/silica/kenaf composites on mechanical properties and microstructure were investigated. In this study, a combination of silica, liquid rubber, and epoxy was used to toughen epoxy/kenaf composite for potential automotive applications. The composites with various liquid rubber MG30 (LMG30) contents from 1 to 7 phr were fabricated by using hand lay-up method and tested according to ASTM standards by using mechanical testings, which were impact and flexural tests. The modified epoxy and fracture surfaces from the impact test were characterized using scanning electron microscopy (SEM) to study the surface interaction. The addition of 1 part per hundred of resin (phr) of LMG30 in epoxy/silica/kenaf composite exhibited the highest impact and flexural strength, which were 13.83 kJ/m2and 62.2 MPa, respectively. SEM analysis proved that the addition of LMG30 helped in lowering the stress transfer and resulted in optimum mechanical properties and the yielded composite has high potential to be used in automotive applications. 

References

Abral, H., Ariksa, J., Mahardika, M., Handayani, D., Aminah, I., Sandrawati, N., Ilyas, R. A. (2020). Transparent and antimicrobial cellulose film from ginger nanofiber. Food Hydrocolloids, 98 doi:10.1016/j.foodhyd.2019.105266

Abral, H., Ariksa, J., Mahardika, M., Handayani, D., Aminah, I., Sandrawati, N., Ilyas, R. A. (2020). Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber. Polymer Testing, 81 doi:10.1016/j.polymertesting.2019.106186

Abral, H., Chairani, M. K., Rizki, M. D., Mahardika, M., Handayani, D., Sugiarti, E., Ilyas, R. A. (2021). Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions. Journal of Materials Research and Technology, 11, 896-904. doi:10.1016/j.jmrt.2021.01.057

Abu Bakar, M. A., Ahmad, S., & Kuntjoro, W. (2012). Effect of epoxidized natural rubber on mechanical properties of epoxy reinforced kenaf fibre composites. Pertanika Journal of Science and Technology, 20(1), 129-137. Retrieved from www.scopus.com

Achary, P. S., Gouri, C., & Ramaswamy, R. (1991). Carboxyl‐terminated poly(propylene glycol) adipate‐modified room temperature curing epoxy adhesive for elevated temperature service environment. Journal of Applied Polymer Science, 42(3), 743-752. doi:10.1002/app.1991.070420318

Ahmed, M. A., Kandil, U. F., Shaker, N. O., & Hashem, A. I. (2015). The overall effect of reactive rubber nanoparticles and nano clay on the mechanical properties of epoxy resin. J Radiat Res Appl Sci, 8(4), 549-561. Retrieved from www.scopus.com

Aisyah, H. A., Paridah, M. T., Sapuan, S. M., Ilyas, R. A., Khalina, A., Nurazzi, N. M., Lee, C. H. (2021). A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers, 13(3), 1-45. doi:10.3390/polym13030471

Aisyah, H. A., Paridah, M. T., Sapuan, S. M., Khalina, A., Berkalp, O. B., Lee, S. H., . . . Ilyas, R. A. (2019). Thermal properties of woven Kenaf/Carbon fibre-reinforced epoxy hybrid composite panels. International Journal of Polymer Science, 2019 doi:10.1155/2019/5258621

Alsubari, S., Zuhri, M. Y. M., Sapuan, S. M., Ishak, M. R., Ilyas, R. A., & Asyraf, M. R. M. (2021). Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers, 13(3), 1-20. doi:10.3390/polym13030423

Arefi-Oskoui, S., Khataee, A., Safarpour, M., Orooji, Y., & Vatanpour, V. (2019). A review on the applications of ultrasonic technology in membrane bioreactors. Ultrasonics Sonochemistry, 58 doi:10.1016/j.ultsonch.2019.104633

Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., Yidris, N., & Ilyas, R. A. (2020). Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies. Journal of Materials Research and Technology, 9(3), 6759-6776. doi:10.1016/j.jmrt.2020.01.013

Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., & Ilyas, R. A. (2019). Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3726-3732. doi:10.1016/j.jmrt.2019.06.032

Ayu, R. S., Khalina, A., Harmaen, A. S., Zaman, K., Isma, T., Liu, Q., Lee, C. H. (2020). Fibers reinforcement in poly(butylene) succinate (PBS)/starch/glycerol composite sheet. Polymers, 12(7), 1-13. doi:10.3390/polym12071571

Bajuri, F., Mazlan, N., Ishak, M. R., & Imatomi, J. (2016). Flexural and compressive properties of hybrid kenaf/silica nanoparticles in epoxy composite. Procedia Chemistry, 19, 955-960. Retrieved from www.scopus.com

Brouwer, W. D. (2001). Common fund for commodities - alternative applications for sisal and henequen. Tech.Pap.14, Amsterdam, Netherlands: Food and Agriculture Organization of the Un (FAO) and the Common Fund for Commodities (CFC), Retrieved from www.scopus.com

Charlesworth, J. M. (1988). Effect of crosslink density on the molecular relaxations in diepoxide‐diamine network polymers. part 1. the glassy region. Polymer Engineering & Science, 28(4), 221-229. doi:10.1002/pen.760280405

Chen, D., Pascault, J. P., & Sautereau, H. (1993). Rubber‐modified epoxies. I. influence of presence of a low level of rubber on the polymerization. Polymer International, 32(4), 361-367. doi:10.1002/pi.4990320406

Conradi, M. (2013). Nanosilica-reinforced polymer composites. Materiali in Tehnologije, 47(3), 285-293. Retrieved from www.scopus.com

Davoodi, M. M., Sapuan, S. M., Ahmad, D., Aidy, A., Khalina, A., & Jonoobi, M. (2011). Concept selection of car bumper beam with developed hybrid bio-composite material. Materials and Design, 32(10), 4857-4865. doi:10.1016/j.matdes.2011.06.011

Farouk, A., Langrana, N. A., & Weng, G. J. (1992). Modulus prediction of a cross‐ply fiber reinforced fabric composite with voids. Polymer Composites, 13(4), 285-294. doi:10.1002/pc.750130406

Faruk, O., Bledzki, A., & Fink, H. (0000). Science MS-P in polymer, 2012 undefined. Biocomposites Reinforced with Natural Fibers: 2000-2010, Retrieved from www.scopus.com

Fiore, V., Di Bella, G., & Valenza, A. (2015). The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 68, 14-21. doi:10.1016/j.compositesb.2014.08.025

Ghasali, E., Orooji, Y., Azarniya, A., Alizadeh, M., Kazem-zad, M., & TouradjEbadzadeh. (2021). Production of V2C MXene using a repetitive pattern of V2AlC MAX phase through microwave heating of al-V2O5-C system. Applied Surface Science, 542 doi:10.1016/j.apsusc.2020.148538

Ghasemi, M., Khataee, A., Gholami, P., Soltani, R. D. C., Hassani, A., & Orooji, Y. (2020). In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. Journal of Environmental Management, 267 doi:10.1016/j.jenvman.2020.110629

Hassan, F., Zulkifli, R., Ghazali, M. J., & Azhari, C. H. (2017). Kenaf fiber composite in automotive industry: An overview. International Journal on Advanced Science, Engineering and Information Technology, 7(1), 315-321. doi:10.18517/ijaseit.7.1.1180

Iijima, T., Yoshioka, N., & Tomoi, M. (1992). Effect of cross-link density on modification of epoxy resins with reactive acrylic elastomers. European Polymer Journal, 28(6), 573-581. doi:10.1016/0014-3057(92)90025-W

Ilyas, R. A., Sapuan, S. M., Atikah, M. S. N., Asyraf, M. R. M., Rafiqah, S. A., Aisyah, H. A., . . . Norrrahim, M. N. F. (2021). Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (arenga pinnata (wurmb.) merr). Textile Research Journal, 91(1-2), 152-167. doi:10.1177/0040517520932393

Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Jumaidin, R. (2019). Sugar palm (arenga pinnata (wurmb.) merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. Journal of Materials Research and Technology, 8(3), 2753-2766. doi:10.1016/j.jmrt.2019.04.011

Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Jumaidin, R. (2019). Sugar palm (arenga pinnata (wurmb.) merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. Journal of Materials Research and Technology, 8(3), 2753-2766. doi:10.1016/j.jmrt.2019.04.011

Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., . . . Jumaidin, R. (2019). Effect of sugar palm nanofibrillated cellulose concentrations on morphological, mechanical and physical properties of biodegradable films based on agro-waste sugar palm (arenga pinnata (wurmb.) merr) starch. Journal of Materials Research and Technology, 8(5), 4819-4830. doi:10.1016/j.jmrt.2019.08.028

Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2018). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (arenga pinnata). Carbohydrate Polymers, 181, 1038-1051. doi:10.1016/j.carbpol.2017.11.045

Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2017). Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources, 12(4), 8734-8754. doi:10.15376/biores.12.4.8734-8754

Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2019). Sugar palm nanofibrillated cellulose (arenga pinnata (wurmb.) merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules, 123, 379-388. doi:10.1016/j.ijbiomac.2018.11.124

Jumaidin, R., Khiruddin, M. A. A., Asyul Sutan Saidi, Z., Salit, M. S., & Ilyas, R. A. (2020). Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746-755. doi:10.1016/j.ijbiomac.2019.11.011

Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polymer Engineering and Science, 49(7), 1253-1272. doi:10.1002/pen.21328

Kargarzadeh, H., Ahmad, I., & Abdullah, I. (2015). Mechanical properties of epoxy-rubber blends. Handbook of Epoxy Blends, , 1-36. Retrieved from www.scopus.com

Kargarzadeh, H., Ahmad, I., Abdullah, I., Thomas, R., Dufresne, A., Thomas, S., & Hassan, A. (2015). Functionalized liquid natural rubber and liquid epoxidized natural rubber: A promising green toughening agent for polyester. Journal of Applied Polymer Science, 132(3) doi:10.1002/app.41292

Khairulazfar, M., & Yuhana, N. Y. (2016). Analysis of glass transition temperatures and mechanical properties of epoxy modified natural rubber. Journal of Rubber Research, 19(4), 211-226. Retrieved from www.scopus.com

Kim, S., Moon, J., Kim, G., & Ha, C. (2008). Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polymer Testing, 27(7), 801-806. doi:10.1016/j.polymertesting.2008.06.002

Kinloch, A. J., Shaw, S. J., & Hunston, D. L. (1983). Deformation and fracture behaviour of a rubber-toughened epoxy: 2. failure criteria. Polymer, 24(10), 1355-1363. doi:10.1016/0032-3861(83)90071-X

Kosmann, N., Karsten, J. M., Schuett, M., Schulte, K., & Fiedler, B. (2015). Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission. Composites Part B: Engineering, 70, 184-188. doi:10.1016/j.compositesb.2014.11.010

Lei, F., Zhang, C., Cai, Z., Yang, J., Sun, H., & Sun, D. (2018). Epoxy toughening with graphite fluoride: Toward high toughness and strength. Polymer, 150, 44-51. doi:10.1016/j.polymer.2018.07.084

Lou, C., & Liu, X. (2018). Functional dendritic curing agent for epoxy resin: Processing, mechanical performance and curing/toughening mechanism. Composites Part B: Engineering, 136, 20-27. doi:10.1016/j.compositesb.2017.09.073

Manshor, M. R., Anuar, H., Nur Aimi, M. N., Ahmad Fitrie, M. I., Wan Nazri, W. B., Sapuan, S. M., . . . Wahit, M. U. (2014). Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Materials and Design, 59, 279-286. doi:10.1016/j.matdes.2014.02.062

Marzouki, R., Brahmia, A., Bondock, S., Keshk, S. M. A. S., Zid, M. F., Al-Sehemi, A. G., . . . Heinze, T. (2019). Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast na-ionic conductor. Carbohydrate Polymers, 221, 29-36. doi:10.1016/j.carbpol.2019.05.083

Mazani, N., Sapuan, S. M., Sanyang, M. L., Atiqah, A., & Ilyas, R. A. (2019). Design and fabrication of a shoe shelf from kenaf fiber reinforced unsaturated polyester composites. Lignocellulose for future bioeconomy (pp. 315-332) doi:10.1016/B978-0-12-816354-2.00017-7 Retrieved from www.scopus.com

Mohd Nurazzi, N., Khalina, A., Chandrasekar, M., Aisyah, H. A., Ayu Rafiqah, S., Ilyas, R. A., & Hanafee, Z. M. (2020). Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. [Wpływ orientacji włókien palmy cukrowej i ich zawartości na właściwości mechaniczne i termiczne kompozytów na bazie nienasyconej żywicy poliestrowej] Polimery/Polymers, 65(2), 115-124. doi:10.14314/POLIMERY.2020.2.5

Mohd Nurazzi, N., Khalina, A., Sapuan, S. M., & Ilyas, R. A. (2019). Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester composites: Effect of fiber loadings and alkaline treatment. Polimery/Polymers, 64(10), 665-675. doi:10.14314/polimery.2019.10.3

Nazrin, A., Sapuan, S. M., Zuhri, M. Y. M., Ilyas, R. A., Syafiq, R., & Sherwani, S. F. K. (2020). Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Frontiers in Chemistry, 8 doi:10.3389/fchem.2020.00213

Nik Baihaqi, N. M. Z., Khalina, A., Mohd Nurazzi, N., Aisyah, H. A., Sapuan, S. M., & Ilyas, R. A. (2021). Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. [Wpływ zawartości i hybrydyzacji włókien na wytrzymałość na zginanie oraz skręcanie hybrydowych kompozytów epoksydowych wzmocnionych włóknami węglowymi i włóknami palmy cukrowej] Polimery/Polymers, 66(1), 36-43. doi:10.14314/POLIMERY.2021.1.5

Nurazzi, N. M., Khalina, A., Sapuan, S. M., Ilyas, R. A., Rafiqah, S. A., & Hanafee, Z. M. (2020). Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. Journal of Materials Research and Technology, 9(2), 1606-1618. doi:10.1016/j.jmrt.2019.11.086

Omran, A. A. B., Mohammed, A. A. B. A., Sapuan, S. M., Ilyas, R. A., Asyraf, M. R. M., Koloor, S. S. R., & Petrů, M. (2021). Micro-and nanocellulose in polymer composite materials: A review. Polymers, 13(2), 1-30. doi:10.3390/polym13020231

Orooji, Y., Alizadeh, A., Ghasali, E., Derakhshandeh, M. R., Alizadeh, M., Asl, M. S., & Ebadzadeh, T. (2019). Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceramics International, 45(16), 20844-20854. doi:10.1016/j.ceramint.2019.07.072

Orooji, Y., Ghasali, E., Emami, N., Noorisafa, F., & Razmjou, A. (2019). ANOVA design for the optimization of TiO2 coating on polyether sulfone membranes. Molecules, 24(16) doi:10.3390/molecules24162924

Orooji, Y., Ghasali, E., Moradi, M., Derakhshandeh, M. R., Alizadeh, M., Asl, M. S., & Ebadzadeh, T. (2019). Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceramics International, 45(13), 16288-16296. doi:10.1016/j.ceramint.2019.05.154

Orooji, Y., Liang, F., Razmjou, A., Liu, G., & Jin, W. (2018). Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separation and Purification Technology, 205, 273-283. doi:10.1016/j.seppur.2018.05.006

Pearson, R. A., & Yee, A. F. (1991). Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. Journal of Materials Science, 26(14), 3828-3844. doi:10.1007/BF01184979

Pearson, R. A., & Yee, A. F. (1986). Toughening mechanisms in elastomer-modified epoxies - part 2 microscopy studies. Journal of Materials Science, 21(7), 2475-2488. doi:10.1007/BF01114294

Pham, T. D., Vu, C. M., & Choi, H. J. (2017). Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica. Polymer Science - Series A, 59(3), 437-444. doi:10.1134/S0965545X17030026

Ratna, D., & Banthia, A. K. (2000). Toughened epoxy adhesive modified with acrylate based liquid rubber. Polymer International, 49(3), 281-287. doi:10.1002/(SICI)1097-0126(200003)49:3<281::AID-PI353>3.0.CO;2-F

Ratna, D., & Banthia, A. K. (2000). Toughening of epoxy resin by modification with 2-ethylhexyl acrylate-acrylic acid copolymers. Polymer International, 49(3), 309-315. doi:10.1002/(SICI)1097-0126(200003)49:3<309::AID-PI370>3.0.CO;2-0

Razali, N., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Lazim, Y. (2016). Mechanical and thermal properties of roselle fibre reinforced vinyl ester composites. BioResources, 11(4), 9325-9339. doi:10.15376/BIORES.11.4.9325-9339

Razmjou, A., Eshaghi, G., Orooji, Y., Hosseini, E., Korayem, A. H., Mohagheghian, F., . . . Chen, V. (2019). Lithium ion-selective membrane with 2D subnanometer channels. Water Research, 159, 313-323. doi:10.1016/j.watres.2019.05.018

Rezaifard, A. H., Hodd, K. A., Tod, D. A., & Barton, J. M. (1994). Toughening epoxy resins with poly (methyl methacrylate)-grafter-natural rubber, and its use in adhesive formulations. International Journal of Adhesion and Adhesives, 14(2), 153-159. doi:10.1016/0143-7496(94)90011-6

Sabaruddin, F. A., Tahir, P. M., Sapuan, S. M., Ilyas, R. A., Lee, S. H., Abdan, K., . . . Khalil Hps, A. (2021). The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers, 13(1), 1-19. doi:10.3390/polym13010116

Sapiai, N., Jumahat, A., Jawaid, M., Midani, M., & Khan, A. (2020). Tensile and flexural properties of silica nanoparticles modified unidirectional kenaf and hybrid glass/kenaf epoxy composites. Polymers, 12(11), 1-11. doi:10.3390/polym12112733

Sapuan, S. M., Aulia, H. S., Ilyas, R. A., Atiqah, A., Dele-Afolabi, T. T., Nurazzi, M. N., . . . Atikah, M. S. N. (2020). Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers, 12(10), 1-14. doi:10.3390/polym12102211

Sari, N. H., Pruncu, C. I., Sapuan, S. M., Ilyas, R. A., Catur, A. D., Suteja, S., Pullen, G. (2020). The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polymer Testing, 91 doi:10.1016/j.polymertesting.2020.106751

Syafri, E., Sudirman, Mashadi, Yulianti, E., Deswita, Asrofi, M., Fudholi, A. (2019). Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (eichhornia crassipes) nanocellulose-filled bengkuang (pachyrhizus erosus) starch biocomposites. Journal of Materials Research and Technology, 8(6), 6223-6231. doi:10.1016/j.jmrt.2019.10.016

 

Taherian, Z., Khataee, A., & Orooji, Y. (2020). Promoted nickel-based catalysts on modified mesoporous silica support: The role of yttria and magnesia on CO2 methanation. Microporous and Mesoporous Materials, 306 doi:10.1016/j.micromeso.2020.110455

Tan, S., Ahmad, S., Chia, C., Mamun, A., & Heim, H. (2013). A comparison study of liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR) as the toughening agent for epoxy. Am.J.Mater.Sci., 3(3), 55-61. Retrieved from www.scopus.com

Tripathi, G., & Srivastava, D. (2008). Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3,4 epoxy cyclohexylmethyl, 3′,4′-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN). Materials Science and Engineering A, 496(1-2), 483-493. doi:10.1016/j.msea.2008.06.035

Vilay, V., Mariatti, M., Mat Taib, R., & Todo, M. (2008). Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Composites Science and Technology, 68(3-4), 631-638. doi:10.1016/j.compscitech.2007.10.005

Wang, F., Drzal, L. T., Qin, Y., & Huang, Z. (2016). Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets. Composites Part A: Applied Science and Manufacturing, 87, 10-22. doi:10.1016/j.compositesa.2016.04.009

Yun, Y. J., Lee, H. J., Son, T. H., Son, H., & Jun, Y. (2019). Mercerization to enhance flexibility and electromechanical stability of reduced graphene oxide cotton yarns. Composites Science and Technology, 184 doi:10.1016/j.compscitech.2019.107845

Zainol, I., Ahmad, M. I., Zakaria, F. A., Ramli, A., Marzuki, H. F. A., & Aziz, A. A. (2006). Modification of epoxy resin using liquid natural rubber doi:10.4028/0-87849-404-9.272 Retrieved from www.scopus.com

Zhou, C., Shi, S. Q., Chen, Z., Cai, L., & Smith, L. (2018). Comparative environmental life cycle assessment of fiber reinforced cement panel between kenaf and glass fibers. Journal of Cleaner Production, 200, 196-204. doi:10.1016/j.jclepro.2018.07.200


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.