UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In this study, different titanium dioxide (TiO2) nanostructures and phase were investigated as photoanode film for application in dye-sensitized solar cells. Rutile TiO2 nanorods (NRs)-nanotrees (NTs) and TiO2 NRs-microcauliflowers (MCFs) were synthesized via hydrothermal method for different time. The mixed phase of rutile-anatase film was fabricated by applying TiO2 nanoparticles paste on the synthesized TiO2 NRs-NTs via squeegee method. The counter electrode film was fabricated by spraying deposition and sputtering methods of reduced graphene oxide?multi-walled carbon nanotubes and platinum, respectively. Solar simulator measurement revealed that higher energy conversion efficiency (1.420%) and short-circuit current density (3.584 mA cm?2) were achieved by using rutile TiO2 NRs-MCFs film. The utilization of a thick rutile film with microparticle structures increases dye adsorption, and thus enhances the electron excitation. Graphic abstract: [Figure not available: see fulltext.]. ? 2021, Indian Academy of Sciences. |
References |
Ahmad, M. K., Mohan, V. M., & Murakami, K. (2015). Hydrothermal growth of bilayered rutile-phased TiO2 nanorods/micro-size TiO2 flower in highly acidic solution for dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 73(3), 655-659. doi:10.1007/s10971-015-3615-6 Ahmad, M. K., Mokhtar, S. M., Soon, C. F., Nafarizal, N., Suriani, A. B., Mohamed, A., . . . Murakami, K. (2016). Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. Journal of Materials Science: Materials in Electronics, 27(8), 7920-7926. doi:10.1007/s10854-016-4783-z Ahmad, M. K., & Murakami, K. (2015). Rutile-phased TiO2 nanorods/nanoflowers based dye-sensitized solar cell. Appl.Mech.Mater., 773-774, 725-728. Retrieved from www.scopus.com Calogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A., & Bonaccorso, F. (2015). Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 44(10), 3244-3294. doi:10.1039/c4cs00309h Cao, Y., Li, Z., Wang, Y., Zhang, T., Li, Y., Liu, X., & Li, F. (2016). Influence of TiO2 nanorod arrays on the bilayered photoanode for dye-sensitized solar cells. Journal of Electronic Materials, 45(10), 4989-4998. doi:10.1007/s11664-016-4670-7 Dahlan, D., Md Saad, S. K., Berli, A. U., Bajili, A., & Umar, A. A. (2017). Synthesis of two-dimensional nanowall of cu-doped TiO2 and its application as photoanode in DSSCs. Physica E: Low-Dimensional Systems and Nanostructures, 91, 185-189. doi:10.1016/j.physe.2017.05.003 Desai, N. D., Khot, K. V., Dongale, T., Musselman, K. P., & Bhosale, P. N. (2019). Development of dye sensitized TiO2 thin films for efficient energy harvesting. Journal of Alloys and Compounds, 790, 1001-1013. doi:10.1016/j.jallcom.2019.03.246 Guai, G. H., Song, Q. L., Guo, C. X., Lu, Z. S., Chen, T., Ng, C. M., & Li, C. M. (2012). Graphene-pt{minus 45 degree rule}ITO counter electrode to significantly reduce pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Solar Energy, 86(7), 2041-2048. doi:10.1016/j.solener.2012.04.006 Hafez, H., Lan, Z., Li, Q., & Wu, J. (2010). High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode doi:10.2147/NSA.S11350 Retrieved from www.scopus.com Hwang, S., Batmunkh, M., Nine, M. J., Chung, H., & Jeong, H. (2015). Dye-sensitized solar cell counter electrodes based on carbon nanotubes. ChemPhysChem, 16(1), 53-65. doi:10.1002/cphc.201402570 Jiang, W., Liu, H., Yin, L., Shi, Y., Chen, B., Jiang, W., & Ding, Y. (2015). Fabrication of enhanced electron transport layer by laser scanning technology for dye-sensitized solar cells. Electrochimica Acta, 176, 1036-1043. doi:10.1016/j.electacta.2015.05.046 Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J. -., & Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51(88), 15894-15897. doi:10.1039/c5cc06759f Keshavarzi, R., Mirkhani, V., Moghadam, M., Tangestaninejad, S., & Mohammadpoor-Baltork, I. (2015). Performance enhancement of dye-sensitized solar cells based on TiO2 thick mesoporous photoanodes by morphological manipulation. Langmuir, 31(42), 11659-11670. doi:10.1021/acs.langmuir.5b02718 Kim, S. -., Park, J. -., Kim, C. -., Okuyama, K., Lee, S. -., Jang, H. -., & Kim, T. -. (2015). Effects of graphene in dye-sensitized solar cells based on nitrogen-doped TiO2 composite. Journal of Physical Chemistry C, 119(29), 16552-16559. doi:10.1021/acs.jpcc.5b02309 Kosyachenko, L. (2011). Solar Cell: Dye-Sensitized Devices, , 192. Retrieved from www.scopus.com Lei, J., Li, H., Zhang, J., & Anpo, M. (2016). Mixed-phase TiO2 nanomaterials as efficient photocatalysts doi:10.1007/978-3-319-25340-4_17 Retrieved from www.scopus.com Liu, B., & Aydil, E. S. (2009). Growth of oriented single-crystalline rutile TiO 2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 131(11), 3985-3990. doi:10.1021/ja8078972 Luo, Z., Poyraz, A. S., Kuo, C. -., Miao, R., Meng, Y., Chen, S. -., . . . Suib, S. L. (2015). Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chemistry of Materials, 27(1), 6-17. doi:10.1021/cm5035112 Luque, A., & Hegedus, S. (2011). Handbook of photovoltaic science and engineering. Handbook of photovoltaic science and engineering () doi:10.1002/9780470974704 Retrieved from www.scopus.com Mary, J. S. S., Princy, P., Steffy, J. A. J., Kumar, P. N., Bachan, N., & Shyla, J. M. (2016). Int.J.Tech.Res.Appl., 37, 60. Retrieved from www.scopus.com Mehmood, U., Malaibari, Z., Rabani, F. A., Rehman, A. U., Ahmad, S. H. A., Atieh, M. A., & Kamal, M. S. (2016). Photovoltaic improvement and charge recombination reduction by aluminum oxide impregnated MWCNTs/TiO2 based photoanode for dye-sensitized solar cells. Electrochimica Acta, 203, 162-170. doi:10.1016/j.electacta.2016.04.027 Mehmood, U., Rahman, S. -., Harrabi, K., Hussein, I. A., & Reddy, B. V. S. (2014). Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014 doi:10.1155/2014/974782 Meier, R. J. (2005). Vibrational spectroscopy: A ‘vanishing’ discipline? Chemical Society Reviews, 34(9), 743-752. doi:10.1039/b503880d Meng, L., Li, C., & dos Santos, M. P. (2011). Effect of annealing temperature on TiO 2 nanorod films prepared by dc reactive magnetron sputtering for dye-sensitized solar cells. Journal of Inorganic and Organometallic Polymers and Materials, 21(4), 770-776. doi:10.1007/s10904-011-9538-y O'Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0 Peng, T., Xu, J., & Chen, R. (2020). A novel multilayer brookite TiO2 electrode for improved performance of pure brookite-based dye sensitized solar cells. Chemical Physics Letters, 738 doi:10.1016/j.cplett.2019.136902 Popoola, I. K., Gondal, M. A., AlGhamdi, J. M., & Qahtan, T. F. (2018). Photofabrication of highly transparent platinum counter electrodes at ambient temperature for bifacial dye sensitized solar cells. Scientific Reports, 8(1) doi:10.1038/s41598-018-31040-1 Quintana, M., Edvinsson, T., Hagfeldt, A., & Boschloo, G. (2007). Comparison of dye-sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. Journal of Physical Chemistry C, 111(2), 1035-1041. doi:10.1021/jp065948f Suriani, A. B., Muqoyyanah, Mohamed, A., Mamat, M. H., Hashim, N., Isa, I. M., . . . Ahmad, M. K. (2018). Improving the photovoltaic performance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Optik, 158, 522-534. doi:10.1016/j.ijleo.2017.12.149 Suriani, A. B., Muqoyyanah, Mohamed, A., Mamat, M. H., Othman, M. H. D., Ahmad, M. K., . . . Birowosuto, M. D. (2019). Titanium dioxide/agglomerated-free reduced graphene oxide hybrid photoanode film for dye-sensitized solar cells photovoltaic performance improvement. Nano-Structures and Nano-Objects, 18 doi:10.1016/j.nanoso.2019.100314 Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., . . . Khalil, H. P. S. A. (2018). Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics, 29(13), 10723-10743. doi:10.1007/s10854-018-9139-4 Tsai, J. K., Hsu, W. D., Wu, T. C., Meen, T. H., & Chong, W. J. (2013). Effect of compressed tio2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Research Letters, 8(1) doi:10.1186/1556-276X-8-459 Wang, H., Bai, Y., Wu, Q., Zhou, W., Zhang, H., Li, J., & Guo, L. (2011). Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 13(15), 7008-7013. doi:10.1039/c1cp20351g Wang, J., Qu, S., Zhong, Z., Wang, S., Liu, K., & Hu, A. (2014). Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells. Progress in Natural Science: Materials International, 24(6), 588-592. doi:10.1016/j.pnsc.2014.10.013 Wu, C., Yue, Y., Deng, X., Hua, W., & Gao, Z. (2004). Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catalysis Today, 93-95, 863-869. doi:10.1016/j.cattod.2004.06.087 Wu, W. -., Liao, J. -., Chen, H. -., Yu, X. -., Su, C. -., & Kuang, D. -. (2012). Dye-sensitized solar cells based on a double layered TiO 2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. Journal of Materials Chemistry, 22(34), 18057-18062. doi:10.1039/c2jm33829g Xie, Y., Zhou, X., Mi, H., Ma, J., Yang, J., & Cheng, J. (2018). High efficiency ZnO-based dye-sensitized solar cells with a 1H,1H,2H,2H-perfluorodecyltriethoxysilane chain barrier for cutting on interfacial recombination. Applied Surface Science, 434, 1144-1152. doi:10.1016/j.apsusc.2017.11.075 Xu, J., Li, K., Wu, S., Shi, W., & Peng, T. (2015). Preparation of brookite titania quasi nanocubes and their application in dye-sensitized solar cells. Journal of Materials Chemistry A, 3(14), 7453-7462. doi:10.1039/c4ta06746k Xu, J., Wu, S., Ri, J. H., Jin, J., & Peng, T. (2016). Bilayer film electrode of brookite TiO2 particles with different morphology to improve the performance of pure brookite-based dye-sensitized solar cells. Journal of Power Sources, 327, 77-85. doi:10.1016/j.jpowsour.2016.07.017 Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. (2013). Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Physical Chemistry Chemical Physics, 15(26), 10978-10988. doi:10.1039/c3cp50927c Zhao, P., Cheng, P., Wang, B., Yao, S., Sun, P., Liu, F., . . . Lu, G. (2014). Bilayered photoanode from rutile TiO2 nanorods and hierarchical anatase TiO2 hollow spheres: A candidate for enhanced efficiency dye sensitized solar cells. RSC Advances, 4(110), 64737-64743. doi:10.1039/c4ra11895b Zheng, D., Xiong, J., Guo, P., Li, Y., & Gu, H. (2016). Fabrication of improved dye-sensitized solar cells with anatase/rutile TiO2 nanofibers. Journal of Nanoscience and Nanotechnology, 16(1), 613-618. doi:10.1166/jnn.2016.10807 Zhou, W., Liu, X., Cui, J., Liu, D., Li, J., Jiang, H., . . . Liu, H. (2011). Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties. CrystEngComm, 13(14), 4557-4563. doi:10.1039/c1ce05186e |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |