UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0009-2614
Main Author :Sivaranjan, Kuppan
Title :Electrochemical and photocatalytic studies of Ta3N5-TaON-PEDOT-PANI nanohybrids
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Chemical Physics Letters
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
The present study deals with the synthesis, characterization, and testing of tantalum nitride- tantalum oxynitride (Ta3N5-TaON) coupled organic polymers (poly (3,4-ethylene dioxythiophene)-polyaniline; PEDOT-PANI) for the electrochemical oxidation and dye degradation applications. The ammonolysis followed by chemical oxidation was employed for the formation of Ta3N5-TaON-PEDOT-PANI nanohybrids, and instrumental techniques such as powder XRD, XPS, FESEM, HR TEM, and UV?Vis analysis were used for the investigation of physicochemical properties. Further, the efficiency of formed nanohybrids was evaluated by taking the active electrocatalytic behavior towards mebendazole (MBZ) oxidation and photocatalytic dye (methylene blue and methyl red) degradations under UV?Visible light illumination. From the analysis of the results, the Ta3N5-TaON-PEDOT-PANI nanohybrids showed excellent activity and stability towards MBZ oxidation and photocatalytic dye degradation, i.e., the highest dye degradation efficiency of > 97% was obtained. Also, the MBZ degradation efficiency was continued for>500 min even after the test. Further from the photocatalytic results, a plausible dye degradation mechanism was proposed based on UV?Vis spectra and thereby confirming the potential catalytic oxidation and degradation behavior of Ta3N5-TaON-PEDOT-PANI nanohybrids. ? 2021 Elsevier B.V.

References

Ahmed, E. N., & Takanabe, Z. (2016). Tantalum nitride for photocatalytic water splitting: Concept and applications. Mater.Renew.Sustain.Energy., 5(18), 1-21. Retrieved from www.scopus.com

Ahmed, M., & Xinxin, G. (2016). A review of metal oxynitrides for photocatalysis. Inorganic Chemistry Frontiers, 3(5), 578-590. doi:10.1039/c5qi00202h

Alina Crina, C., Benea, L., & Pierre, P. (2016). Corrosion resistance of zinc–resin hybrid coatings obtained by electro-codeposition. Arabian J.Chem., Retrieved from www.scopus.com

Chatterjee, M. J., Ghosh, A., Mondal, A., & Banerjee, D. (2017). Polyaniline-single walled carbon nanotube composite-a photocatalyst to degrade rose bengal and methyl orange dyes under visible-light illumination. RSC Advances, 7(58), 36403-36415. doi:10.1039/c7ra03855k

Cong, Y., Park, H. S., Dang, H. X., Fan, F. -. F., Bard, A. J., & Mullins, C. B. (2012). Tantalum cobalt nitride photocatalysts for water oxidation under visible light. Chemistry of Materials, 24(3), 579-586. doi:10.1021/cm203269n

Dang, H. X., Hahn, N. T., Park, H. S., Bard, A. J., & Mullins, C. B. (2012). Nanostructured ta 3N 5 films as visible-light active photoanodes for water oxidation. Journal of Physical Chemistry C, 116(36), 19225-19232. doi:10.1021/jp307369z

Dayan, A. D. (2003). Albendazole, mebendazole and praziquantel. review of non-clinical toxicity and pharmacokinetics. Acta Tropica, 86(2-3), 141-159. doi:10.1016/S0001-706X(03)00031-7

Hajibabaei, H., Zandi, O., & Hamann, T. W. (2016). Tantalum nitride films integrated with transparent conductive oxide substrates: Via atomic layer deposition for photoelectrochemical water splitting. Chemical Science, 7(11), 6760-6767. doi:10.1039/c6sc02116f

Higashi, M., Domen, K., & Abe, R. (2011). Fabrication of efficient TaON and ta 3N 5 photoanodes for water splitting under visible light irradiation. Energy and Environmental Science, 4(10), 4138-4147. doi:10.1039/c1ee01878g

Ida, S., Okamoto, Y., Matsuka, M., Hagiwara, H., & Ishihara, T. (2012). Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa 2Ta 3O 10-xN y, and their photocatalytic activity. Journal of the American Chemical Society, 134(38), 15773-15782. doi:10.1021/ja3043678

Lacey, E. (1990). Mode of action of benzimidazoles. Parasitology Today, 6(4), 112-115. doi:10.1016/0169-4758(90)90227-U

Liu, J., McCarthy, D., Tong, L., Cowan, M. J., Kinsley, J. M., Sonnenberg, L., . . . Jones, W. E. (2016). Poly(3,4-ethylenedioxythiophene) (PEDOT) infused TiO2 nanofibers: The role of hole transport layer in photocatalytic degradation of phenazopyridine as a pharmaceutical contaminant. RSC Advances, 6(115), 113884-113892. doi:10.1039/c6ra22797j

Lu, X. -., Chen, X. -., Zhou, W., Tong, Y. -., & Li, G. -. (2015). α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Applied Materials and Interfaces, 7(27), 14843-14850. doi:10.1021/acsami.5b03126

Luo, Y., Liu, X., Tang, X., Luo, Y., Zeng, Q., Deng, X., . . . Sun, Y. (2014). Gold nanoparticles embedded in Ta2O5/Ta 3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. Journal of Materials Chemistry A, 2(36), 14927-14939. doi:10.1039/c4ta02991g

Maeda, K., & Domen, K. (2007). New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C, 111(22), 7851-7861. doi:10.1021/jp070911w

Maeda, K., & Domen, K. (2010). Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 1(18), 2655-2661. doi:10.1021/jz1007966

Munusamy, S., Suresh, R., Krishnamoorthy, G., Ramadoss, M., Praveen Kumar, S., Selvamani, M., . . . Narayanan, V. (2015). Synthesis, characterization of GaN/PEDOT-PPY nanocomposites and its photocatalytic activity and electrochemical detection of mebendazole. Arab.J.Chem., Retrieved from www.scopus.com

Nagarajan, S., Skillen, N. C., Fina, F., Zhang, G., Randorn, C., Lawton, L. A., . . . Robertson, P. K. J. (2017). Comparative assessment of visible light and UV active photocatalysts by hydroxyl radical quantification. Journal of Photochemistry and Photobiology A: Chemistry, 334, 13-19. doi:10.1016/j.jphotochem.2016.10.034

Planes, G. A., Rodríguez, J. L., Pastor, E., & Barbero, C. (2003). Evidence of a free pt surface under electrodeposited polyaniline (PANI) films: CO adsorption and methanol oxidation at PANI/Pt without metal particles. Langmuir, 19(20), 8137-8140. doi:10.1021/la0346043

Ratnamala, A., Suresh, G., Kumari, V. D., & Subrahmanyam, M. (2008). Template synthesized nano-crystalline natrotantite: Preparation and photocatalytic activity for water decomposition. Materials Chemistry and Physics, 110(1), 176-179. doi:10.1016/j.matchemphys.2008.01.039

Seo, J., Takata, T., Nakabayashi, M., Hisatomi, T., Shibata, N., Minegishi, T., & Domen, K. (2015). Mg-zr cosubstituted Ta3N5 photoanode for lower-onset-potential solar-driven photoelectrochemical water splitting. Journal of the American Chemical Society, 137(40), 12780-12783. doi:10.1021/jacs.5b08329

Seredych, M., Pietrzak, R., & Bandosz, T. J. (2007). Role of graphite oxide (GO) and polyaniline (PANI) in NO 2 reduction on GO-PANI composites. Industrial and Engineering Chemistry Research, 46(21), 6925-6935. doi:10.1021/ie070458a

Swanepoel, E., Liebenberg, W., & De Villiers, M. M. (2003). Quality evaluation of generic drugs by dissolution test: Changing the USP dissolution medium to distinguish between active and non-active mebendazole polymorphs. European Journal of Pharmaceutics and Biopharmaceutics, 55(3), 345-349. doi:10.1016/S0939-6411(03)00004-3

Takanabe, K., & Domen, K. (2012). Preparation of inorganic photocatalytic materials for overall water splitting. ChemCatChem, 4(10), 1485-1497. doi:10.1002/cctc.201200324

Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110(11), 6446-6473. doi:10.1021/cr1002326

Wang, J., Fang, T., Zhang, L., Feng, J., Li, Z., & Zou, Z. (2014). Effects of oxygen doping on optical band gap and band edge positions of Ta3N5 photocatalyst: A GGA + U calculation. Journal of Catalysis, 309, 291-299. doi:10.1016/j.jcat.2013.10.014

Yuliati, L., Yang, J. -., Wang, X., Maeda, K., Takata, T., Antonietti, M., & Domen, K. (2010). Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. Journal of Materials Chemistry, 20(21), 4295-4298. doi:10.1039/c0jm00341g

Zeng, W. (2018). Yuan BianYuan bian, yuan bian, sheng cao, yongjin ma, yi liu, anquan zhu, pengfei tan, and jun pan, phase transformation synthesis of strontium tantalum oxynitride-based heterojunction for improved visible-light-driven hydrogen evolution. ACS Appl.Mater.Interf., 10, 25. Retrieved from www.scopus.com

Zhang, P., Wang, T., Zhang, J., Chang, X., & Gong, J. (2015). Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting. Nanoscale, 7(31), 13153-13158. doi:10.1039/c5nr03013g

Zhang, P., Zhang, J., & Gong, J. (2014). Tantalum-based semiconductors for solar water splitting. Chemical Society Reviews, 43(13), 4395-4422. doi:10.1039/c3cs60438a

Zhen, C., Chen, R., Wang, L., Liu, G., & Cheng, H. -. (2016). Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. Journal of Materials Chemistry A, 4(8), 2783-2800. doi:10.1039/c5ta07057k


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.