UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Renewed interest has brought significant attention to tune coherently the electronic and optical properties of hybrid organic-inorganic perovskites (HOIPs) in recent years. Tailoring the intimate structure-property relationship is a primary target toward the advancement of light-harvesting technologies. These constructive progresses are expected to promote staggering endeavors within the solar cells community that needs to be revisited. Several considerations and strategies are introduced mainly to illustrate the importance of structural stability, interfacial alignment, and photo-generated carriers extraction across the perovskite heterostructures. Here, we review recent strides of such vast compelling diversity in order to shed some light on the interplay of the interfacial chemistry, photophysics, and light-emitting properties of HOIPs via molecular engineering or doping approach. In addition, we outline several fundamental knowledge processes across the role of charge transfer, charge carrier extraction, passivation agent, bandgap, and emission tunability at two-dimensional (2D) level of HOIPs/molecule heterointerfaces. An extensive range of the relevant work is illustrated to embrace new research directions for employing organic molecules as targeted active layer in perovskite-based devices. Ultimately, we address important insights related to the physical phenomena at the active molecules/perovskites interfaces that deserve careful considerations. This review specifically outlines a comprehensive overview of surface-based interactions that fundamentally challenges the delicate balance between organic materials and perovskites, which promotes bright future of desired practical applications. ? 2021 World Scientific Publishing Company. |
References |
Arramel, Hu, P., Xie, A., Yin, X., Tang, C. S., Ikeda, K., . . . Wu, J. (2020). Molecular functionalization of all-inorganic perovskite CsPbBr3thin films. Journal of Materials Chemistry C, 8(36), 12587-12598. doi:10.1039/d0tc02642e Arramel, Pan, H., Xie, A., Hou, S., Yin, X., Tang, C. S., . . . Wu, J. (2019). Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Research, 12(1), 77-84. doi:10.1007/s12274-018-2183-9 Béchu, S., Ralaiarisoa, M., Etcheberry, A., & Schulz, P. (2020). Photoemission spectroscopy characterization of halide perovskites. Advanced Energy Materials, 10(26) doi:10.1002/aenm.201904007 Berhe, T. A., Su, W. -., Chen, C. -., Pan, C. -., Cheng, J. -., Chen, H. -., . . . Hwang, B. -. (2016). Organometal halide perovskite solar cells: Degradation and stability. Energy and Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k Blancon, J. -., Even, J., Stoumpos, C. C., Kanatzidis, M. G., & Mohite, A. D. (2020). Semiconductor physics of organic–inorganic 2D halide perovskites. Nature Nanotechnology, 15(12), 969-985. doi:10.1038/s41565-020-00811-1 Cai, W., Chen, Z., Chen, D., Su, S., Xu, Q., Yip, H. -., & Cao, Y. (2019). High-performance and stable CsPbBr3 light-emitting diodes based on polymer additive treatment. RSC Advances, 9(47), 27684-27691. doi:10.1039/c9ra05270d Chen, B., Rudd, P. N., Yang, S., Yuan, Y., & Huang, J. (2019). Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 48(14), 3842-3867. doi:10.1039/c8cs00853a Chen, J., & Park, N. -. (2020). Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Letters, 5(8), 2742-2786. doi:10.1021/acsenergylett.0c01240 Chen, S., Goh, T. W., Sabba, D., Chua, J., Mathews, N., Huan, C. H. A., & Sum, T. C. (2014). Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Materials, 2(8) doi:10.1063/1.4889844 Chong, W. K., Thirumal, K., Giovanni, D., Goh, T. W., Liu, X., Mathews, N., . . . Sum, T. C. (2016). Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Physical Chemistry Chemical Physics, 18(21), 14701-14708. doi:10.1039/c6cp01955b Dou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., . . . Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/science.aac7660 Eames, C., Frost, J. M., Barnes, P. R. F., O'Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6 doi:10.1038/ncomms8497 Einstein, A. (1905). Zur elektrodynamik bewegter körper. Annalen Der Physik, 322(10), 891-921. doi:10.1002/andp.19053221004 Emara, J., Schnier, T., Pourdavoud, N., Riedl, T., Meerholz, K., & Olthof, S. (2016). Impact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskites. Advanced Materials, 28(3), 553-559. doi:10.1002/adma.201503406 Gao, Y., Wei, Z., Hsu, S. -., Boudouris, B. W., & Dou, L. (2020). Two-dimensional halide perovskites featuring semiconducting organic building blocks. Materials Chemistry Frontiers, 4(12), 3400-3418. doi:10.1039/d0qm00233j Gauthron, K., Lauret, J. -., Doyennette, L., Lanty, G., Choueiry, A. A., Zhang, S. J., . . . Deleporte, E. (2010). Optical spectroscopy of two-dimensional layered (C6H 5C2H4-NH3)2-PbI 4 perovskite. Optics Express, 18(6), 5912-5919. doi:10.1364/OE.18.005912 Ghosh, D., Acharya, D., Pedesseau, L., Katan, C., Even, J., Tretiak, S., & Neukirch, A. J. (2020). Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-jacobson: Vs. ruddlesden-popper phases. Journal of Materials Chemistry A, 8(42), 22009-22022. doi:10.1039/d0ta07205b Hellmann, T., Das, C., Abzieher, T., Schwenzer, J. A., Wussler, M., Dachauer, R., . . . Mayer, T. (2020). The electronic structure of MAPI-based perovskite solar cells: Detailed band diagram determination by photoemission spectroscopy comparing classical and inverted device stacks. Advanced Energy Materials, 10(42) doi:10.1002/aenm.202002129 Hertz, H. (1887). Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Annalen Der Physik, 267(8), 983-1000. doi:10.1002/andp.18872670827 Hieulle, J., Stecker, C., Ohmann, R., Ono, L. K., & Qi, Y. (2018). Scanning probe microscopy applied to Organic–Inorganic halide perovskite materials and solar cells. Small Methods, 2(1) doi:10.1002/smtd.201700295 Hong, X., Ishihara, T., & Nurmikko, A. V. (1992). Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Physical Review B, 45(12), 6961-6964. doi:10.1103/PhysRevB.45.6961 Hoye, R. L. Z., Schulz, P., Schelhas, L. T., Holder, A. M., Stone, K. H., Perkins, J. D., . . . Buonassisi, T. (2017). Perovskite-inspired photovoltaic materials: Toward best practices in materials characterization and calculations. Chemistry of Materials, 29(5), 1964-1988. doi:10.1021/acs.chemmater.6b03852 Ishihara, T., Takahashi, J., & Goto, T. (1989). Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Communications, 69(9), 933-936. doi:10.1016/0038-1098(89)90935-6 Jiang, J., Li, N., Zou, J., Zhou, X., Eda, G., Zhang, Q., . . . Wee, A. T. S. (2019). Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews, 48(17), 4639-4654. doi:10.1039/c9cs00348g Jin, H., Debroye, E., Keshavarz, M., Scheblykin, I. G., Roeffaers, M. B. J., Hofkens, J., & Steele, J. A. (2020). It's a trap! on the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 7(2), 397-410. doi:10.1039/c9mh00500e Katan, C., Mercier, N., & Even, J. (2019). Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chemical Reviews, 119(5), 3140-3192. doi:10.1021/acs.chemrev.8b00417 Kollár, M., Ćirić, L., Dil, J. H., Weber, A., Muff, S., Ronnow, H. M., . . . Horváth, E. (2017). Clean, cleaved surfaces of the photovoltaic perovskite. Scientific Reports, 7(1) doi:10.1038/s41598-017-00799-0 Komesu, T., Huang, X., Paudel, T. R., Losovyj, Y. B., Zhang, X., Schwier, E. F., . . . Dowben, P. A. (2016). Surface electronic structure of hybrid organo lead bromide perovskite single crystals. Journal of Physical Chemistry C, 120(38), 21710-21715. doi:10.1021/acs.jpcc.6b08329 Li, B., Wu, Y., Li, N., Chen, X., Zeng, X., Arramel, . . . Jiang, J. (2020). Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Applied Materials and Interfaces, 12(8), 9261-9267. doi:10.1021/acsami.9b20552 Li, X., Ke, W., Traoré, B., Guo, P., Hadar, I., Kepenekian, M., . . . Kanatzidis, M. G. (2019). Two-dimensional dion-jacobson hybrid lead iodide perovskites with aromatic diammonium cations. Journal of the American Chemical Society, 141(32), 12880-12890. doi:10.1021/jacs.9b06398 Liu, N., Liu, P., Zhou, H., Bai, Y., & Chen, Q. (2020). Understanding the defect properties of quasi-2D halide perovskites for photovoltaic applications. Journal of Physical Chemistry Letters, 11(9), 3521-3528. doi:10.1021/acs.jpclett.0c00772 Mao, L., Ke, W., Pedesseau, L., Wu, Y., Katan, C., Even, J., . . . Kanatzidis, M. G. (2018). Hybrid dion-jacobson 2D lead iodide perovskites. Journal of the American Chemical Society, 140(10), 3775-3783. doi:10.1021/jacs.8b00542 Mao, L., Stoumpos, C. C., & Kanatzidis, M. G. (2019). Two-dimensional hybrid halide perovskites: Principles and promises. Journal of the American Chemical Society, 141(3), 1171-1190. doi:10.1021/jacs.8b10851 Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373-389. doi:10.1016/j.jcis.2016.11.021 Mauck, C. M., & Tisdale, W. A. (2019). Excitons in 2D Organic–Inorganic halide perovskites. Trends in Chemistry, 1(4), 380-393. doi:10.1016/j.trechm.2019.04.003 Miller, E. M., Zhao, Y., Mercado, C. C., Saha, S. K., Luther, J. M., Zhu, K., . . . Van De Lagemaat, J. (2014). Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Physical Chemistry Chemical Physics, 16(40), 22122-22130. doi:10.1039/c4cp03533j Mitzi, D. B. (2004). Hybrid organic-inorganic electronics. Functional Hybrid Materials, , 347-386. Retrieved from www.scopus.com Mitzi, D. B. (2001). Templating and structural engineering in organic-inorganic perovskites. Journal of the Chemical Society, Dalton Transactions, (1), 1-12. doi:10.1039/b007070j Ni, Z., Bao, C., Liu, Y., Jiang, Q., Wu, W. -., Chen, S., . . . Huang, J. (2020). Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 367(6484), 1352-1358. doi:10.1126/science.aba0893 Niesner, D. (2020). Surface electronic structure and dynamics of lead halide perovskites. APL Materials, 8(9) doi:10.1063/5.0019877 Olthof, S., & Meerholz, K. (2017). Substrate-dependent electronic structure and film formation of MAPbI 3 perovskites. Scientific Reports, 7 doi:10.1038/srep40267 Ono, L. K., Liu, S., & Qi, Y. (2020). Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angewandte Chemie - International Edition, 59(17), 6676-6698. doi:10.1002/anie.201905521 Ono, L. K., & Qi, Y. (2016). Surface and interface aspects of organometal halide perovskite materials and solar cells. Journal of Physical Chemistry Letters, 7(22), 4764-4794. doi:10.1021/acs.jpclett.6b01951 Oranskaia, A., Yin, J., Bakr, O. M., Brédas, J. -., & Mohammed, O. F. (2018). Halogen migration in hybrid perovskites: The organic cation matters. Journal of Physical Chemistry Letters, 9(18), 5474-5480. doi:10.1021/acs.jpclett.8b02522 Ortiz-Cervantes, C., Carmona-Monroy, P., & Solis-Ibarra, D. (2019). Two-dimensional halide perovskites in solar cells: 2D or not 2D? ChemSusChem, 12(8), 1560-1575. doi:10.1002/cssc.201802992 Ou, Q., Zhang, Y., Wang, Z., Yuwono, J. A., Wang, R., Dai, Z., . . . Bao, Q. (2018). Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Advanced Materials, 30(15) doi:10.1002/adma.201705792 Philippe, B., Park, B. -., Lindblad, R., Oscarsson, J., Ahmadi, S., Johansson, E. M. J., & Rensmo, H. (2015). Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures-A photoelectron spectroscopy investigation. Chemistry of Materials, 27(5), 1720-1731. doi:10.1021/acs.chemmater.5b00348 Qiu, L., He, S., Ono, L. K., & Qi, Y. (2020). Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Advanced Energy Materials, 10(13) doi:10.1002/aenm.201902726 Sahare, S., Ghoderao, P., Khan, S. B., Chan, Y., & Lee, S. -. (2020). Recent progress in hybrid perovskite solar cells through scanning tunneling microscopy and spectroscopy. Nanoscale, 12(30), 15970-15992. doi:10.1039/d0nr03499a Saparov, B., & Mitzi, D. B. (2016). Organic-inorganic perovskites: Structural versatility for functional materials design. Chemical Reviews, 116(7), 4558-4596. doi:10.1021/acs.chemrev.5b00715 Schulz, P., Cahen, D., & Kahn, A. (2019). Halide perovskites: Is it all about the interfaces? Chemical Reviews, 119(5), 3349-3417. doi:10.1021/acs.chemrev.8b00558 Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D., & Kahn, A. (2014). Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy and Environmental Science, 7(4), 1377-1381. doi:10.1039/c4ee00168k Schulz, P., Whittaker-Brooks, L. L., Macleod, B. A., Olson, D. C., Loo, Y. -., & Kahn, A. (2015). Electronic level alignment in inverted organometal perovskite solar cells. Advanced Materials Interfaces, 2(7) doi:10.1002/admi.201400532 Shao, S., & Loi, M. A. (2020). The role of the interfaces in perovskite solar cells. Advanced Materials Interfaces, 7(1) doi:10.1002/admi.201901469 Silver, S., Dai, Q., Li, H., Brédas, J. -., & Kahn, A. (2019). Quantum well energetics of an n = 2 Ruddlesden–Popper phase perovskite. Advanced Energy Materials, 9(25) doi:10.1002/aenm.201901005 Smith, M. D., Connor, B. A., & Karunadasa, H. I. (2019). Tuning the luminescence of layered halide perovskites. Chemical Reviews, 119(5), 3104-3139. doi:10.1021/acs.chemrev.8b00477 Steirer, K. X., Schulz, P., Teeter, G., Stevanovic, V., Yang, M., Zhu, K., & Berry, J. J. (2016). Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Letters, 1(2), 360-366. doi:10.1021/acsenergylett.6b00196 Stoumpos, C. C., Cao, D. H., Clark, D. J., Young, J., Rondinelli, J. M., Jang, J. I., . . . Kanatzidis, M. G. (2016). Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 28(8), 2852-2867. doi:10.1021/acs.chemmater.6b00847 Stoumpos, C. C., Soe, C. M. M., Tsai, H., Nie, W., Blancon, J. -., Cao, D. H., . . . Kanatzidis, M. G. (2017). High members of the 2D ruddlesden-popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem, 2(3), 427-440. doi:10.1016/j.chempr.2017.02.004 Straus, D. B., & Kagan, C. R. (2018). Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties. Journal of Physical Chemistry Letters, 9(6), 1434-1447. doi:10.1021/acs.jpclett.8b00201 Sum, T. C., Chen, S., Xing, G., Liu, X., & Wu, B. (2015). Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters. Nanotechnology, 26(34) doi:10.1088/0957-4484/26/34/342001 Telychko, M., & Lu, J. (2019). Recent advances in atomic imaging of organic-inorganic hybrid perovskites. Nano Materials Science, 1(4), 260-267. doi:10.1016/j.nanoms.2019.10.005 Tian, X., Zhang, Y., Zheng, R., Wei, D., & Liu, J. (2020). Two-dimensional organic-inorganic hybrid ruddlesden-popper perovskite materials: Preparation, enhanced stability, and applications in photodetection. Sustainable Energy and Fuels, 4(5), 2087-2113. doi:10.1039/c9se01181a Tress, W., Leo, K., & Riede, M. (2011). Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I-V curves of organic solar cells. Advanced Functional Materials, 21(11), 2140-2149. doi:10.1002/adfm.201002669 Tsai, H., Nie, W., Blancon, J. -., Stoumpos, C. C., Asadpour, R., Harutyunyan, B., . . . Mohite, A. D. (2016). High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature, 536(7616), 312-317. doi:10.1038/nature18306 van der Heide, P. (2011). X-ray photoelectron spectroscopy: An introduction to principles and practices. X-ray photoelectron spectroscopy: An introduction to principles and practices () doi:10.1002/9781118162897 Retrieved from www.scopus.com Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. -. (2015). Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie - International Edition, 54(6), 1791-1794. doi:10.1002/anie.201409740 Wang, Q. -., Wang, R. -., Shen, P. -., Li, C., Li, Y. -., Liu, L. -., . . . Tang, J. -. (2015). Energy level offsets at lead halide Perovskite/Organic hybrid interfaces and their impacts on charge separation. Advanced Materials Interfaces, 2(3) doi:10.1002/admi.201400528 Wang, S., Sakurai, T., Wen, W., & Qi, Y. (2018). Energy level alignment at interfaces in metal halide perovskite solar cells. Advanced Materials Interfaces, 5(22) doi:10.1002/admi.201800260 Wolstenholme, J. F. W. J. (2019). Electron Spectroscopy, 1, 1-18. Retrieved from www.scopus.com Wu, X., Trinh, M. T., Niesner, D., Zhu, H., Norman, Z., Owen, J. S., . . . Zhu, X. -. (2015). Trap states in lead iodide perovskites. Journal of the American Chemical Society, 137(5), 2089-2096. doi:10.1021/ja512833n Xue, J., Wang, R., & Yang, Y. (2020). The surface of halide perovskites from nano to bulk. Nature Reviews Materials, 5(11), 809-827. doi:10.1038/s41578-020-0221-1 Yang, J. -., Luo, Y., Bao, Q., Li, Y. -., & Tang, J. -. (2019). Recent advances in energetics and stability of metal halide perovskites for optoelectronic applications. Advanced Materials Interfaces, 6(3) doi:10.1002/admi.201801351 Yang, J. -., Meissner, M., Yamaguchi, T., Zhang, X. -., Ueba, T., Cheng, L. -., . . . Kera, S. (2018). Band dispersion and hole effective mass of methylammonium lead iodide perovskite. Solar RRL, 2(10) doi:10.1002/solr.201800132 Yin, W. -., Shi, T., & Yan, Y. (2014). Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 26(27), 4653-4658. doi:10.1002/adma.201306281 Zhang, F., Lu, H., Tong, J., Berry, J. J., Beard, M. C., & Zhu, K. (2020). Advances in two-dimensional organic-inorganic hybrid perovskites. Energy and Environmental Science, 13(4), 1154-1186. doi:10.1039/c9ee03757h Zhang, F., Silver, S. H., Noel, N. K., Ullrich, F., Rand, B. P., & Kahn, A. (2020). Ultraviolet photoemission spectroscopy and kelvin probe measurements on metal halide perovskites: Advantages and pitfalls. Advanced Energy Materials, 10(26) doi:10.1002/aenm.201903252 Zhang, X., Jiang, J., Suleiman, A. A., Jin, B., Hu, X., Zhou, X., & Zhai, T. (2019). Hydrogen-assisted growth of ultrathin te flakes with giant gate-dependent photoresponse. Advanced Functional Materials, 29(49) doi:10.1002/adfm.201906585 Zhao, S., Lan, C., Li, H., Zhang, C., & Ma, T. (2020). Aurivillius halide perovskite: A new family of two-dimensional materials for optoelectronic applications. Journal of Physical Chemistry C, 124(3), 1788-1793. doi:10.1021/acs.jpcc.9b08450 Zou, J., Wu, S., Liu, Y., Sun, Y., Cao, Y., Hsu, J. -., . . . Jiang, J. (2018). An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon, 130, 652-663. doi:10.1016/j.carbon.2018.01.008 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |