UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0218-625X
Main Author :Diguna, Lina J.
Additional Authors :Suriani Abu Bakar
Title :Electronic and optical modification of organic-hybrid perovskites
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Surface Review and Letters
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Renewed interest has brought significant attention to tune coherently the electronic and optical properties of hybrid organic-inorganic perovskites (HOIPs) in recent years. Tailoring the intimate structure-property relationship is a primary target toward the advancement of light-harvesting technologies. These constructive progresses are expected to promote staggering endeavors within the solar cells community that needs to be revisited. Several considerations and strategies are introduced mainly to illustrate the importance of structural stability, interfacial alignment, and photo-generated carriers extraction across the perovskite heterostructures. Here, we review recent strides of such vast compelling diversity in order to shed some light on the interplay of the interfacial chemistry, photophysics, and light-emitting properties of HOIPs via molecular engineering or doping approach. In addition, we outline several fundamental knowledge processes across the role of charge transfer, charge carrier extraction, passivation agent, bandgap, and emission tunability at two-dimensional (2D) level of HOIPs/molecule heterointerfaces. An extensive range of the relevant work is illustrated to embrace new research directions for employing organic molecules as targeted active layer in perovskite-based devices. Ultimately, we address important insights related to the physical phenomena at the active molecules/perovskites interfaces that deserve careful considerations. This review specifically outlines a comprehensive overview of surface-based interactions that fundamentally challenges the delicate balance between organic materials and perovskites, which promotes bright future of desired practical applications. ? 2021 World Scientific Publishing Company.

References

Arramel, Hu, P., Xie, A., Yin, X., Tang, C. S., Ikeda, K., . . . Wu, J. (2020). Molecular functionalization of all-inorganic perovskite CsPbBr3thin films. Journal of Materials Chemistry C, 8(36), 12587-12598. doi:10.1039/d0tc02642e

Arramel, Pan, H., Xie, A., Hou, S., Yin, X., Tang, C. S., . . . Wu, J. (2019). Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Research, 12(1), 77-84. doi:10.1007/s12274-018-2183-9

Béchu, S., Ralaiarisoa, M., Etcheberry, A., & Schulz, P. (2020). Photoemission spectroscopy characterization of halide perovskites. Advanced Energy Materials, 10(26) doi:10.1002/aenm.201904007

Berhe, T. A., Su, W. -., Chen, C. -., Pan, C. -., Cheng, J. -., Chen, H. -., . . . Hwang, B. -. (2016). Organometal halide perovskite solar cells: Degradation and stability. Energy and Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k

Blancon, J. -., Even, J., Stoumpos, C. C., Kanatzidis, M. G., & Mohite, A. D. (2020). Semiconductor physics of organic–inorganic 2D halide perovskites. Nature Nanotechnology, 15(12), 969-985. doi:10.1038/s41565-020-00811-1

Cai, W., Chen, Z., Chen, D., Su, S., Xu, Q., Yip, H. -., & Cao, Y. (2019). High-performance and stable CsPbBr3 light-emitting diodes based on polymer additive treatment. RSC Advances, 9(47), 27684-27691. doi:10.1039/c9ra05270d

Chen, B., Rudd, P. N., Yang, S., Yuan, Y., & Huang, J. (2019). Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 48(14), 3842-3867. doi:10.1039/c8cs00853a

Chen, J., & Park, N. -. (2020). Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Letters, 5(8), 2742-2786. doi:10.1021/acsenergylett.0c01240

Chen, S., Goh, T. W., Sabba, D., Chua, J., Mathews, N., Huan, C. H. A., & Sum, T. C. (2014). Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Materials, 2(8) doi:10.1063/1.4889844

Chong, W. K., Thirumal, K., Giovanni, D., Goh, T. W., Liu, X., Mathews, N., . . . Sum, T. C. (2016). Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Physical Chemistry Chemical Physics, 18(21), 14701-14708. doi:10.1039/c6cp01955b

Dou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., . . . Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/science.aac7660

Eames, C., Frost, J. M., Barnes, P. R. F., O'Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6 doi:10.1038/ncomms8497

Einstein, A. (1905). Zur elektrodynamik bewegter körper. Annalen Der Physik, 322(10), 891-921. doi:10.1002/andp.19053221004

Emara, J., Schnier, T., Pourdavoud, N., Riedl, T., Meerholz, K., & Olthof, S. (2016). Impact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskites. Advanced Materials, 28(3), 553-559. doi:10.1002/adma.201503406

Gao, Y., Wei, Z., Hsu, S. -., Boudouris, B. W., & Dou, L. (2020). Two-dimensional halide perovskites featuring semiconducting organic building blocks. Materials Chemistry Frontiers, 4(12), 3400-3418. doi:10.1039/d0qm00233j

Gauthron, K., Lauret, J. -., Doyennette, L., Lanty, G., Choueiry, A. A., Zhang, S. J., . . . Deleporte, E. (2010). Optical spectroscopy of two-dimensional layered (C6H 5C2H4-NH3)2-PbI 4 perovskite. Optics Express, 18(6), 5912-5919. doi:10.1364/OE.18.005912

Ghosh, D., Acharya, D., Pedesseau, L., Katan, C., Even, J., Tretiak, S., & Neukirch, A. J. (2020). Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-jacobson: Vs. ruddlesden-popper phases. Journal of Materials Chemistry A, 8(42), 22009-22022. doi:10.1039/d0ta07205b

Hellmann, T., Das, C., Abzieher, T., Schwenzer, J. A., Wussler, M., Dachauer, R., . . . Mayer, T. (2020). The electronic structure of MAPI-based perovskite solar cells: Detailed band diagram determination by photoemission spectroscopy comparing classical and inverted device stacks. Advanced Energy Materials, 10(42) doi:10.1002/aenm.202002129

Hertz, H. (1887). Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Annalen Der Physik, 267(8), 983-1000. doi:10.1002/andp.18872670827

Hieulle, J., Stecker, C., Ohmann, R., Ono, L. K., & Qi, Y. (2018). Scanning probe microscopy applied to Organic–Inorganic halide perovskite materials and solar cells. Small Methods, 2(1) doi:10.1002/smtd.201700295

Hong, X., Ishihara, T., & Nurmikko, A. V. (1992). Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Physical Review B, 45(12), 6961-6964. doi:10.1103/PhysRevB.45.6961

Hoye, R. L. Z., Schulz, P., Schelhas, L. T., Holder, A. M., Stone, K. H., Perkins, J. D., . . . Buonassisi, T. (2017). Perovskite-inspired photovoltaic materials: Toward best practices in materials characterization and calculations. Chemistry of Materials, 29(5), 1964-1988. doi:10.1021/acs.chemmater.6b03852

Ishihara, T., Takahashi, J., & Goto, T. (1989). Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Communications, 69(9), 933-936. doi:10.1016/0038-1098(89)90935-6

Jiang, J., Li, N., Zou, J., Zhou, X., Eda, G., Zhang, Q., . . . Wee, A. T. S. (2019). Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chemical Society Reviews, 48(17), 4639-4654. doi:10.1039/c9cs00348g

Jin, H., Debroye, E., Keshavarz, M., Scheblykin, I. G., Roeffaers, M. B. J., Hofkens, J., & Steele, J. A. (2020). It's a trap! on the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 7(2), 397-410. doi:10.1039/c9mh00500e

Katan, C., Mercier, N., & Even, J. (2019). Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chemical Reviews, 119(5), 3140-3192. doi:10.1021/acs.chemrev.8b00417

Kollár, M., Ćirić, L., Dil, J. H., Weber, A., Muff, S., Ronnow, H. M., . . . Horváth, E. (2017). Clean, cleaved surfaces of the photovoltaic perovskite. Scientific Reports, 7(1) doi:10.1038/s41598-017-00799-0

Komesu, T., Huang, X., Paudel, T. R., Losovyj, Y. B., Zhang, X., Schwier, E. F., . . . Dowben, P. A. (2016). Surface electronic structure of hybrid organo lead bromide perovskite single crystals. Journal of Physical Chemistry C, 120(38), 21710-21715. doi:10.1021/acs.jpcc.6b08329

Li, B., Wu, Y., Li, N., Chen, X., Zeng, X., Arramel, . . . Jiang, J. (2020). Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Applied Materials and Interfaces, 12(8), 9261-9267. doi:10.1021/acsami.9b20552

Li, X., Ke, W., Traoré, B., Guo, P., Hadar, I., Kepenekian, M., . . . Kanatzidis, M. G. (2019). Two-dimensional dion-jacobson hybrid lead iodide perovskites with aromatic diammonium cations. Journal of the American Chemical Society, 141(32), 12880-12890. doi:10.1021/jacs.9b06398

Liu, N., Liu, P., Zhou, H., Bai, Y., & Chen, Q. (2020). Understanding the defect properties of quasi-2D halide perovskites for photovoltaic applications. Journal of Physical Chemistry Letters, 11(9), 3521-3528. doi:10.1021/acs.jpclett.0c00772

Mao, L., Ke, W., Pedesseau, L., Wu, Y., Katan, C., Even, J., . . . Kanatzidis, M. G. (2018). Hybrid dion-jacobson 2D lead iodide perovskites. Journal of the American Chemical Society, 140(10), 3775-3783. doi:10.1021/jacs.8b00542

Mao, L., Stoumpos, C. C., & Kanatzidis, M. G. (2019). Two-dimensional hybrid halide perovskites: Principles and promises. Journal of the American Chemical Society, 141(3), 1171-1190. doi:10.1021/jacs.8b10851

Marinova, N., Valero, S., & Delgado, J. L. (2017). Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373-389. doi:10.1016/j.jcis.2016.11.021

Mauck, C. M., & Tisdale, W. A. (2019). Excitons in 2D Organic–Inorganic halide perovskites. Trends in Chemistry, 1(4), 380-393. doi:10.1016/j.trechm.2019.04.003

Miller, E. M., Zhao, Y., Mercado, C. C., Saha, S. K., Luther, J. M., Zhu, K., . . . Van De Lagemaat, J. (2014). Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Physical Chemistry Chemical Physics, 16(40), 22122-22130. doi:10.1039/c4cp03533j

Mitzi, D. B. (2004). Hybrid organic-inorganic electronics. Functional Hybrid Materials, , 347-386. Retrieved from www.scopus.com

Mitzi, D. B. (2001). Templating and structural engineering in organic-inorganic perovskites. Journal of the Chemical Society, Dalton Transactions, (1), 1-12. doi:10.1039/b007070j

Ni, Z., Bao, C., Liu, Y., Jiang, Q., Wu, W. -., Chen, S., . . . Huang, J. (2020). Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 367(6484), 1352-1358. doi:10.1126/science.aba0893

Niesner, D. (2020). Surface electronic structure and dynamics of lead halide perovskites. APL Materials, 8(9) doi:10.1063/5.0019877

Olthof, S., & Meerholz, K. (2017). Substrate-dependent electronic structure and film formation of MAPbI 3 perovskites. Scientific Reports, 7 doi:10.1038/srep40267

Ono, L. K., Liu, S., & Qi, Y. (2020). Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angewandte Chemie - International Edition, 59(17), 6676-6698. doi:10.1002/anie.201905521

Ono, L. K., & Qi, Y. (2016). Surface and interface aspects of organometal halide perovskite materials and solar cells. Journal of Physical Chemistry Letters, 7(22), 4764-4794. doi:10.1021/acs.jpclett.6b01951

Oranskaia, A., Yin, J., Bakr, O. M., Brédas, J. -., & Mohammed, O. F. (2018). Halogen migration in hybrid perovskites: The organic cation matters. Journal of Physical Chemistry Letters, 9(18), 5474-5480. doi:10.1021/acs.jpclett.8b02522

Ortiz-Cervantes, C., Carmona-Monroy, P., & Solis-Ibarra, D. (2019). Two-dimensional halide perovskites in solar cells: 2D or not 2D? ChemSusChem, 12(8), 1560-1575. doi:10.1002/cssc.201802992

Ou, Q., Zhang, Y., Wang, Z., Yuwono, J. A., Wang, R., Dai, Z., . . . Bao, Q. (2018). Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Advanced Materials, 30(15) doi:10.1002/adma.201705792

Philippe, B., Park, B. -., Lindblad, R., Oscarsson, J., Ahmadi, S., Johansson, E. M. J., & Rensmo, H. (2015). Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures-A photoelectron spectroscopy investigation. Chemistry of Materials, 27(5), 1720-1731. doi:10.1021/acs.chemmater.5b00348

Qiu, L., He, S., Ono, L. K., & Qi, Y. (2020). Progress of surface science studies on ABX3-based metal halide perovskite solar cells. Advanced Energy Materials, 10(13) doi:10.1002/aenm.201902726

Sahare, S., Ghoderao, P., Khan, S. B., Chan, Y., & Lee, S. -. (2020). Recent progress in hybrid perovskite solar cells through scanning tunneling microscopy and spectroscopy. Nanoscale, 12(30), 15970-15992. doi:10.1039/d0nr03499a

Saparov, B., & Mitzi, D. B. (2016). Organic-inorganic perovskites: Structural versatility for functional materials design. Chemical Reviews, 116(7), 4558-4596. doi:10.1021/acs.chemrev.5b00715

Schulz, P., Cahen, D., & Kahn, A. (2019). Halide perovskites: Is it all about the interfaces? Chemical Reviews, 119(5), 3349-3417. doi:10.1021/acs.chemrev.8b00558

Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D., & Kahn, A. (2014). Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy and Environmental Science, 7(4), 1377-1381. doi:10.1039/c4ee00168k

Schulz, P., Whittaker-Brooks, L. L., Macleod, B. A., Olson, D. C., Loo, Y. -., & Kahn, A. (2015). Electronic level alignment in inverted organometal perovskite solar cells. Advanced Materials Interfaces, 2(7) doi:10.1002/admi.201400532

Shao, S., & Loi, M. A. (2020). The role of the interfaces in perovskite solar cells. Advanced Materials Interfaces, 7(1) doi:10.1002/admi.201901469

Silver, S., Dai, Q., Li, H., Brédas, J. -., & Kahn, A. (2019). Quantum well energetics of an n = 2 Ruddlesden–Popper phase perovskite. Advanced Energy Materials, 9(25) doi:10.1002/aenm.201901005

Smith, M. D., Connor, B. A., & Karunadasa, H. I. (2019). Tuning the luminescence of layered halide perovskites. Chemical Reviews, 119(5), 3104-3139. doi:10.1021/acs.chemrev.8b00477

Steirer, K. X., Schulz, P., Teeter, G., Stevanovic, V., Yang, M., Zhu, K., & Berry, J. J. (2016). Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Letters, 1(2), 360-366. doi:10.1021/acsenergylett.6b00196

Stoumpos, C. C., Cao, D. H., Clark, D. J., Young, J., Rondinelli, J. M., Jang, J. I., . . . Kanatzidis, M. G. (2016). Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 28(8), 2852-2867. doi:10.1021/acs.chemmater.6b00847

Stoumpos, C. C., Soe, C. M. M., Tsai, H., Nie, W., Blancon, J. -., Cao, D. H., . . . Kanatzidis, M. G. (2017). High members of the 2D ruddlesden-popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem, 2(3), 427-440. doi:10.1016/j.chempr.2017.02.004

Straus, D. B., & Kagan, C. R. (2018). Electrons, excitons, and phonons in two-dimensional hybrid perovskites: Connecting structural, optical, and electronic properties. Journal of Physical Chemistry Letters, 9(6), 1434-1447. doi:10.1021/acs.jpclett.8b00201

Sum, T. C., Chen, S., Xing, G., Liu, X., & Wu, B. (2015). Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters. Nanotechnology, 26(34) doi:10.1088/0957-4484/26/34/342001

Telychko, M., & Lu, J. (2019). Recent advances in atomic imaging of organic-inorganic hybrid perovskites. Nano Materials Science, 1(4), 260-267. doi:10.1016/j.nanoms.2019.10.005

Tian, X., Zhang, Y., Zheng, R., Wei, D., & Liu, J. (2020). Two-dimensional organic-inorganic hybrid ruddlesden-popper perovskite materials: Preparation, enhanced stability, and applications in photodetection. Sustainable Energy and Fuels, 4(5), 2087-2113. doi:10.1039/c9se01181a

Tress, W., Leo, K., & Riede, M. (2011). Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I-V curves of organic solar cells. Advanced Functional Materials, 21(11), 2140-2149. doi:10.1002/adfm.201002669

Tsai, H., Nie, W., Blancon, J. -., Stoumpos, C. C., Asadpour, R., Harutyunyan, B., . . . Mohite, A. D. (2016). High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature, 536(7616), 312-317. doi:10.1038/nature18306

van der Heide, P. (2011). X-ray photoelectron spectroscopy: An introduction to principles and practices. X-ray photoelectron spectroscopy: An introduction to principles and practices () doi:10.1002/9781118162897 Retrieved from www.scopus.com

Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G., & Wei, S. -. (2015). Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie - International Edition, 54(6), 1791-1794. doi:10.1002/anie.201409740

Wang, Q. -., Wang, R. -., Shen, P. -., Li, C., Li, Y. -., Liu, L. -., . . . Tang, J. -. (2015). Energy level offsets at lead halide Perovskite/Organic hybrid interfaces and their impacts on charge separation. Advanced Materials Interfaces, 2(3) doi:10.1002/admi.201400528

Wang, S., Sakurai, T., Wen, W., & Qi, Y. (2018). Energy level alignment at interfaces in metal halide perovskite solar cells. Advanced Materials Interfaces, 5(22) doi:10.1002/admi.201800260

Wolstenholme, J. F. W. J. (2019). Electron Spectroscopy, 1, 1-18. Retrieved from www.scopus.com

Wu, X., Trinh, M. T., Niesner, D., Zhu, H., Norman, Z., Owen, J. S., . . . Zhu, X. -. (2015). Trap states in lead iodide perovskites. Journal of the American Chemical Society, 137(5), 2089-2096. doi:10.1021/ja512833n

Xue, J., Wang, R., & Yang, Y. (2020). The surface of halide perovskites from nano to bulk. Nature Reviews Materials, 5(11), 809-827. doi:10.1038/s41578-020-0221-1

Yang, J. -., Luo, Y., Bao, Q., Li, Y. -., & Tang, J. -. (2019). Recent advances in energetics and stability of metal halide perovskites for optoelectronic applications. Advanced Materials Interfaces, 6(3) doi:10.1002/admi.201801351

Yang, J. -., Meissner, M., Yamaguchi, T., Zhang, X. -., Ueba, T., Cheng, L. -., . . . Kera, S. (2018). Band dispersion and hole effective mass of methylammonium lead iodide perovskite. Solar RRL, 2(10) doi:10.1002/solr.201800132

Yin, W. -., Shi, T., & Yan, Y. (2014). Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 26(27), 4653-4658. doi:10.1002/adma.201306281

Zhang, F., Lu, H., Tong, J., Berry, J. J., Beard, M. C., & Zhu, K. (2020). Advances in two-dimensional organic-inorganic hybrid perovskites. Energy and Environmental Science, 13(4), 1154-1186. doi:10.1039/c9ee03757h

Zhang, F., Silver, S. H., Noel, N. K., Ullrich, F., Rand, B. P., & Kahn, A. (2020). Ultraviolet photoemission spectroscopy and kelvin probe measurements on metal halide perovskites: Advantages and pitfalls. Advanced Energy Materials, 10(26) doi:10.1002/aenm.201903252

Zhang, X., Jiang, J., Suleiman, A. A., Jin, B., Hu, X., Zhou, X., & Zhai, T. (2019). Hydrogen-assisted growth of ultrathin te flakes with giant gate-dependent photoresponse. Advanced Functional Materials, 29(49) doi:10.1002/adfm.201906585

Zhao, S., Lan, C., Li, H., Zhang, C., & Ma, T. (2020). Aurivillius halide perovskite: A new family of two-dimensional materials for optoelectronic applications. Journal of Physical Chemistry C, 124(3), 1788-1793. doi:10.1021/acs.jpcc.9b08450

Zou, J., Wu, S., Liu, Y., Sun, Y., Cao, Y., Hsu, J. -., . . . Jiang, J. (2018). An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon, 130, 652-663. doi:10.1016/j.carbon.2018.01.008


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.