UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The present study deals with the synthesis, characterization, and testing of g-C3N4-PANI-PPy nanohybrids for electrochemical and photocatalytic studies. For the formation of nanohybrids, the chemical oxidative method was employed and was thoroughly characterized for the surface, functional, and elemental properties by making use of different instrumental techniques like XRD, XPS, FTIR, UV-Vis, Raman, FESEM, HRTEM, and EDAX. On testing of the electrochemical sensing properties, we found that the g-C3N4-PANI-PPy modified glassy carbon electrode (GCE) exhibited satisfactory results for the mebendazole drug detection and is supported by the formation of layer and donor-acceptor behavior corresponding to the electrochemical cyclic stability. Further, the g-C3N4-PANI-PPy nanohybrid investigated to have high photocatalytic performance towards the degradation of organic dye, methylene blue, and is supported by the enhanced specific surface area and transition of surface electrons. Finally, with such beneficial features of electrochemical sensitivity and great catalytic activity, the developed g-C3N4-PANI-PPy hybrid can find applications in the analytical laboratories and also catalysis research. ? 2020 Elsevier B.V. |
References |
Chen, Y., Zhan, Z., Wang, J., Shen, Y., Liu, S., & Zhang, Y. (2018). Solution-based processing of carbon nitride composite for boosted photocatalytic activities. Chinese Chemical Letters, 29(3), 437-440. doi:10.1016/j.cclet.2017.08.028 Cometto, O., Dennett, C. A., Tsang, S. H., Short, M. P., & Teo, E. H. T. (2018). A thermal study of amorphous and textured carbon and carbon nitride thin films via transient grating spectroscopy. Carbon, 130, 355-361. doi:10.1016/j.carbon.2018.01.025 Devthade, V., Kulhari, D., & Umare, S. S. (2018). Role of precursors on photocatalytic behavior of graphitic carbon nitride. Paper presented at the Materials Today: Proceedings, , 5(3) 9203-9210. doi:10.1016/j.matpr.2017.10.045 Retrieved from www.scopus.com Dong, G., Zhang, Y., Pan, Q., & Qiu, J. (2014). A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20(1), 33-50. doi:10.1016/j.jphotochemrev.2014.04.002 Dong, G., Zhang, Y., Pan, Q., & Qiu, J. (2014). A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20(1), 33-50. doi:10.1016/j.jphotochemrev.2014.04.002 Ghalkhani, M., & Maghsoudi, S. (2017). Development of an electrochemical differential pH sensing system based on mebendazole and potassium ferrocyanide. Journal of Materials Science: Materials in Electronics, 28(18), 13665-13672. doi:10.1007/s10854-017-7209-7 Giribabu, K., Suresh, R., Manigandan, R., Munusamy, S., Kumar, S. P., Muthamizh, S., & Narayanan, V. (2013). Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode. Analyst, 138(19), 5811-5818. doi:10.1039/c3an00941f He, Z., Chen, J., Chen, Y., Makwarimba, C. P., Huang, X., Zhang, S., . . . Song, S. (2018). An activated carbon fiber-supported graphite carbon nitride for effective electro-fenton process. Electrochimica Acta, 276, 377-388. doi:10.1016/j.electacta.2018.04.195 Huang, K. -., & Chien, S. -. (2013). Improved visible-light-driven photocatalytic activity of rutile/titania-nanotube composites prepared by microwave-assisted hydrothermal process. Applied Catalysis B: Environmental, 140-141, 283-288. doi:10.1016/j.apcatb.2013.04.001 Ji, Y., Qin, C., Niu, H., Sun, L., Jin, Z., & Bai, X. (2015). Electrochemical and electrochromic behaviors of polyaniline-graphene oxide composites on the glass substrate/Ag nano-film electrodes prepared by vertical target pulsed laser deposition. Dyes and Pigments, 117, 72-82. doi:10.1016/j.dyepig.2015.01.026 Jun, Y. -., Hong, W. H., Antonietti, M., & Thomas, A. (2009). Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Advanced Materials, 21(42), 4270-4274. doi:10.1002/adma.200803500 Kim, Y., & Shanmugam, S. (2013). Polyoxometalate-reduced graphene oxide hybrid catalyst: Synthesis, structure, and electrochemical properties. ACS Applied Materials and Interfaces, 5(22), 12197-12204. doi:10.1021/am4043245 Liu, X., Li, C., Zhang, Y., Yu, J., Yuan, M., & Ma, Y. (2017). Simultaneous photodegradation of multi-herbicides by oxidized carbon nitride: Performance and practical application. Applied Catalysis B: Environmental, 219, 194-199. doi:10.1016/j.apcatb.2017.07.007 Lu, Q., Zhang, J., Liu, X., Wu, Y., Yuan, R., & Chen, S. (2014). Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@graphitic carbon nitride polymer nanosheet-polyaniline hybrids. Analyst, 139(24), 6556-6562. doi:10.1039/c4an01595a Mazloum-Ardakani, M., Aghaei, R., Abdollahi-Alibeik, M., & Moaddeli, A. (2015). Fabrication of modified glassy carbon electrode using graphene quantum dot, gold nanoparticles and 4-(((4-mercaptophenyl)imino)methyl) benzene-1,2-diol by self-assembly method and investigation of their electrocatalytic activities. Journal of Electroanalytical Chemistry, 738, 113-122. doi:10.1016/j.jelechem.2014.11.021 She, X., Xu, H., Xu, Y., Yan, J., Xia, J., Xu, L., . . . Li, H. (2014). Exfoliated graphene-like carbon nitride in organic solvents: Enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. Journal of Materials Chemistry A, 2(8), 2563-2570. doi:10.1039/c3ta13768f Sivaranjan, K., Padmaraj, O., Santhanalakshmi, J., Sathuvan, M., Sathiyaseelan, A., & Sagadevan, S. (2020). Effect of hybrid mono/bimetallic nanocomposites for an enhancement of catalytic and antimicrobial activities. Scientific Reports, 10(1) doi:10.1038/s41598-020-59491-5 Tian, J., Liu, Q., Asiri, A. M., Al-Youbi, A. O., & Sun, X. (2013). Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical Chemistry, 85(11), 5595-5599. doi:10.1021/ac400924j Tian, L., Li, J., Liang, F., Wang, J., Li, S., Zhang, H., & Zhang, S. (2018). Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Applied Catalysis B: Environmental, 225, 307-313. doi:10.1016/j.apcatb.2017.11.082 Tissera, N. D., Wijesena, R. N., Rathnayake, S., de Silva, R. M., & de Silva, K. M. N. (2018). Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties. Carbohydrate Polymers, 186, 35-44. doi:10.1016/j.carbpol.2018.01.027 Ulutürk, C., & Alemdar, N. (2018). Electroconductive 3D polymeric network production by using polyaniline/chitosan-based hydrogel. Carbohydrate Polymers, 193, 307-315. doi:10.1016/j.carbpol.2018.03.099 Wang, C., Fan, H., Ren, X., Fang, J., Ma, J., & Zhao, N. (2018). Porous graphitic carbon nitride nanosheets by pre-polymerization for enhanced photocatalysis. Materials Characterization, 139, 89-99. doi:10.1016/j.matchar.2018.02.036 Wang, D., Liu, L., Zhang, F., Tao, K., Pippel, E., & Domen, K. (2011). Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Letters, 11(9), 3649-3655. doi:10.1021/nl2015262 Wang, Y., Wang, X., & Antonietti, M. (2012). Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chemie - International Edition, 51(1), 68-89. doi:10.1002/anie.201101182 Youssef, A. M., Kamel, S., El-Sakhawy, M., & El Samahy, M. A. (2012). Structural and electrical properties of paper-polyaniline composite. Carbohydrate Polymers, 90(2), 1003-1007. doi:10.1016/j.carbpol.2012.06.034 Zhang, J., Wang, A., Zhao, W., Li, C., Chen, X., Wang, Y., . . . Zhong, Q. (2018). Influence of metal-porphyrins on the photocatalysis of graphitic carbon nitride. Dyes and Pigments, 153, 241-247. doi:10.1016/j.dyepig.2018.02.028 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |