UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1013-9826
Main Author :Ameer, Ali A.
Additional Authors :Suriani Abu Bakar
Title :Enhancement of photocatalytic performances by sand/zinc oxide
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Key Engineering Materials
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
In this work, sand/zinc oxide (ZnO) nanorods (NRs) have been successfully fabricated on the sand particles using the sol-gel immersion method.The sand/ZnO NRs/custom made immersion methods have successfully composited tri-chain hyper-branched (TC14) ? graphene oxide (GO) and sand/ZnO NRs/sodium dodecyl sulfate surfactant (SDS) ? GO. The FESEM images show the sand/ZnO NRs/TC14-GO have the thin layer compare to sand/ZnO NRs/SDS-GO. The structural properties of sand/ZnO NRs/TC14-GO and sand/ZnO NRs/SDS-GO investigated by Micro-Raman Spectra. Which the sand/ZnO NRs/TC14-GO show best crystallinity compare to sand/ZnO NRs/SDSGO based on ID/IG ratio was around ~ 0.81 and 0.23. The photocatalysis performance were investigated by UV-vis instrument under 365 nm. The highest removal percent of 5 parts per million (ppm) of methylene blue (MB) with 30 g were observed in sand/ZnO NRs/TC14-GO after 72 hours was ~100%. The improvement of photocatalysis performances of sand/ZnO NRs by composited with GO have been explained by the mechanism. ? 2021 Trans Tech Publications Ltd, Switzerland.

References

Ameer, A. A., Suriani, A. B., Jabur, A. R., Hashim, N., Fatiatun, & Zaid, K. (2019). The fabrication of zinc oxide nanorods and nanowires by solgel immersion methods. Paper presented at the Journal of Physics: Conference Series, , 1170(1) doi:10.1088/1742-6596/1170/1/012005 Retrieved from www.scopus.com

Becker, J., Raghupathi, K. R., St. Pierre, J., Zhao, D., & Koodali, R. T. (2011). Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. Journal of Physical Chemistry C, 115(28), 13844-13850. doi:10.1021/jp2038653

Chen, C., Zhou, P., Wang, N., Ma, Y., & San, H. (2018). UV-assisted photochemical synthesis of reduced graphene oxide/ZnO nanowires composite for photoresponse enhancement in UV photodetectors. Nanomaterials, 8(1) doi:10.3390/nano8010026

Chen, P. K., Lee, G. J., Davies, S. H., Masten, S. J., Amutha, R., & Wu, J. J. (2013). Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of orange II dye. Materials Research Bulletin, 48(6), 2375-2382. doi:10.1016/j.materresbull.2013.02.062

Di Mauro, A., Cantarella, M., Nicotra, G., Privitera, V., & Impellizzeri, G. (2016). Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Applied Catalysis B: Environmental, 196, 68-76. doi:10.1016/j.apcatb.2016.05.015

Ding, J., Wang, M., Deng, J., Gao, W., Yang, Z., Ran, C., & Zhang, X. (2014). A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide. Journal of Alloys and Compounds, 582, 29-32. doi:10.1016/j.jallcom.2013.07.197

Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., . . . Novoselov, K. S. (2009). Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science, 323(5914), 610-613. doi:10.1126/science.1167130

Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0

Hou, J., Wang, Z., Jiao, S., & Zhu, H. (2011). 3D Bi12TiO20/TiO2 hierarchical heterostructure: Synthesis and enhanced visible-light photocatalytic activities. Journal of Hazardous Materials, 192(3), 1772-1779. doi:10.1016/j.jhazmat.2011.07.013

Hou, X., Wang, L., Li, F., He, G., & Li, L. (2015). Controlled loading of gold nanoparticles on ZnO nanorods and their high photocatalytic activity. Materials Letters, 159, 502-505. doi:10.1016/j.matlet.2015.08.054

Huang, K., Li, Y. H., Lin, S., Liang, C., Wang, H., Ye, C. X., . . . Lei, M. (2014). A facile route to reduced graphene oxide-zinc oxide nanorod composites with enhanced photocatalytic activity. Powder Technology, 257, 113-119. doi:10.1016/j.powtec.2014.02.047

Khan, M. M., Adil, S. F., & Al-Mayouf, A. (2015). Metal oxides as photocatalysts. Journal of Saudi Chemical Society, 19(5), 462-464. doi:10.1016/j.jscs.2015.04.003

Li, B., Liu, T., Wang, Y., & Wang, Z. (2012). ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 377(1), 114-121. doi:10.1016/j.jcis.2012.03.060

Liang, Y., Guo, N., Li, L., Li, R., Ji, G., & Gan, S. (2016). Facile synthesis of Ag/ZnO micro-flowers and their improved ultraviolet and visible light photocatalytic activity. New Journal of Chemistry, 40(2), 1587-1594. doi:10.1039/c5nj02388b

Linsebigler, A. L., Lu, G., & Yates, J. T., Jr. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758. doi:10.1021/cr00035a013

Liu, J., Yu, M., Zhou, C., Yang, S., Ning, X., & Zheng, J. (2013). Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. Journal of the American Chemical Society, 135(13), 4978-4981. doi:10.1021/ja401612x

Nishiyabu, R., Ushikubo, S., Kamiya, Y., & Kubo, Y. (2014). A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water. Journal of Materials Chemistry A, 2(38), 15846-15852. doi:10.1039/c4ta03268c

Opoku, F., Govender, K. K., Van Sittert, C. G. C. E., & Govender, P. P. (2017). Understanding the mechanism of enhanced charge separation and visible light photocatalytic activity of modified wurtzite ZnO with nanoclusters of ZnS and graphene oxide: From a hybrid density functional study. New Journal of Chemistry, 41(16), 8140-8155. doi:10.1039/c7nj01942d

Pawar, R. C., Shaikh, J. S., Suryavanshi, S. S., & Patil, P. S. (2012). Growth of ZnO nanodisk, nanospindles and nanoflowers for gas sensor: PH dependency. Current Applied Physics, 12(3), 778-783. doi:10.1016/j.cap.2011.11.005

Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., & Krishnan-Ayer, R. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(4), 171-192. doi:10.1016/j.jphotochemrev.2008.09.001

Ranjith, K. S., Manivel, P., Rajendrakumar, R. T., & Uyar, T. (2017). Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chemical Engineering Journal, 325, 588-600. doi:10.1016/j.cej.2017.05.105

Ravichandran, K., Dhanraj, C., Ibrahim, M. M., & Kavitha, P. (2020). Materials today: Proceedings enhancing the photocatalytic efficiency of ZnO thin films by the addition of mo and rGO. Mater.Today Proc, Retrieved from www.scopus.com

Roy, N., & Chakraborty, S. (2020). ZnO as photocatalyst: An approach to waste water treatment. Mater.Today:.Proc., Retrieved from www.scopus.com

Saleh, T. A., Gondal, M. A., & Drmosh, Q. A. (2010). Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser. Nanotechnology, 21(49) doi:10.1088/0957-4484/21/49/495705

Singh, K., & Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 41(9), 807-878. doi:10.1080/10643380903218376

Song, J., & Lim, S. (2007). Effect of seed layer on the growth of ZnO nanorods. Journal of Physical Chemistry C, 111(2), 596-600. doi:10.1021/jp0655017

Sudhagar, P., Devadoss, A., Song, T., Lakshmipathiraj, P., Han, H., Lysak, V. V., . . . Kang, Y. S. (2014). Enhanced photocatalytic performance at a Au/N-TiO2 hollow nanowire array by a combination of light scattering and reduced recombination. Physical Chemistry Chemical Physics, 16(33), 17748-17755. doi:10.1039/c4cp02009j

Suriani, A. B., Fatiatun, Mohamed, A., Muqoyyanah, Hashim, N., Rosmi, M. S., . . . Abdul Khalil, H. P. S. (2018). Reduced graphene oxide/platinum hybrid counter electrode assisted by custom-made triple-tail surfactant and zinc oxide/titanium dioxide bilayer nanocomposite photoanode for enhancement of DSSCs photovoltaic performance. Optik, 161, 70-83. doi:10.1016/j.ijleo.2018.02.013

Toe, M. Z., Jusoh, N. A. H. N., Pung, S. Y., Yaacob, K. A., Matsuda, A., Tan, W. K., & Han, S. S. (2019). Effect of ZnO seed layer on the growth of ZnO nanorods on silicon substrate. Paper presented at the Materials Today: Proceedings, , 17 553-559. doi:10.1016/j.matpr.2019.06.334 Retrieved from www.scopus.com

Zhao, Y., Liu, L., Cui, T., Tong, G., & Wu, W. (2017). Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition. Applied Surface Science, 412, 58-68. doi:10.1016/j.apsusc.2017.03.207


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.