UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1742-6588
Main Author :Siti Fatihah
Additional Authors :Nurul Hila Zainuddin
Shazlyn Milleana Shaharudin
Rawdah Adawiyah Tarmizi
Nurhanani Romli
Title :Evaluation of generated bootstrap weight in layer perceptron for Southeast Asia visitors during COVID19 outbreak
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Physics: Conference Series
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
The pandemic COVID-19 effected the global business sector include the tourism industry. Forecasting the visitor arrival from Southeast Asia is a vital for organized the economy impact at Malaysia state, particularly during this outbreak. Neural network family has been substantial approaches in tourism and the economy. The layer perceptron is a part of the neural network model which is used to produce accurate forecasting. However, the inherent biasness in the perceptron algorithm could lead to an underfitting problem which eventually leads to poor performance of forecast accuracy. The motivation of this study is to improve the accuracy of single-layer perceptron in forecasting the Southeast Asia visitors in Malaysia during COVID19. In this study, the bootstrap weights are generated at the hidden layer to reduce the biasness in output layer. The forecasting result of generated bootstrap weight model is compared with conventional perceptron model in terms of small bias estimation. The statistical results revealed that the generated bootstrap weight in perceptron provides accurate forecasting for Southeast Asia visitors during COVID-19. ? Published under licence by IOP Publishing Ltd.

References

Aladag, C. H., Basaran, M. A., Egrioglu, E., Yolcu, U., & Uslu, V. R. (2009). Forecasting in high order fuzzy times series by using neural networks to define fuzzy relations. Expert Systems with Applications, 36(3 PART 1), 4228-4231. doi:10.1016/j.eswa.2008.04.001

Ali Choudhary, M., & Haider, A. (2012). Neural network models for inflation forecasting: An appraisal. Applied Economics, 44(20), 2631-2635. doi:10.1080/00036846.2011.566190

Al-Maqaleh, B. M., Al-Mansoub, A. A., & Al-Badani, F. N. (2016). Forecasting using artificial neural network and statistics models. Int.J.Educ.Manag.Eng.(IJEME), 6(3), 20-32. Retrieved from www.scopus.com

Baker, S. R., Bloom, N., Davis, S. J., & Terry, S. J. (2020). The unprecedented stock market reaction to COVID-19. Covid-Induced Economic Uncertainty, (3) Retrieved from www.scopus.com

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. doi:10.1023/A:1018054314350

Cang, S. (2014). A comparative analysis of three types of tourism demand forecasting models: Individual, linear combination and non-linear combination. International Journal of Tourism Research, 16(6), 596-607. doi:10.1002/jtr.1953

Carlsson, L. (2015). Using multilayer perceptrons asmeans to predict the end-pointtemperature in an electric ArcFurnace. Using Multilayer Perceptron as Means to Predict the End-Point Temperature in an Electric Arc Furnace, Retrieved from www.scopus.com

Chen, R., Liang, C. -., Hong, W. -., & Gu, D. -. (2015). Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Applied Soft Computing, 26, 435-443. doi:10.1016/j.asoc.2014.10.022

Cho, V. (2009). A study on the temporal dynamics of tourism demand in the asia pacifi c region. International Journal of Tourism Research, 11(5), 465-485. doi:10.1002/jtr.714

Efron, B. (1979). Computers and the theory of statistics: Thinking the unthinkable. SIAM Review, 21(4), 460-480. Retrieved from www.scopus.com

Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54-75. doi:10.1214/ss/1177013815

Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Retrieved from www.scopus.com

Gopinath, G. (2020). The great lockdown: Worst economic downturn since the great depression. The Great Lockdown: Worst Economic Downturn since the Great Depression, Retrieved from www.scopus.com

Guo, Z. X., Wong, W. K., & Li, M. (2012). Sparsely connected neural network-based time series forecasting. Information Sciences, 193, 54-71. doi:10.1016/j.ins.2012.01.011

ILO. (2020). COVID-19 and the world of work: Impact and policy responses. ILO monitor. COVID-19 and the World of Work: Impact and Policy Responses, Retrieved from www.scopus.com

Jia, Y., & Culver, T. B. (2006). Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. Journal of Hydrology, 331(3-4), 580-590. doi:10.1016/j.jhydrol.2006.06.005

Kon, S. C., & Turner, L. W. (2005). Neural network forecasting of tourism demand. Tourism Economics, 11(3), 301-328. doi:10.5367/000000005774353006

Koskela, T., Lehtokangas, M., Saarinen, J., & Kaski, K. (1996). Time series prediction with multilayer perceptron, FIR and elman neural networks. Proceedings of the World Congress on Neural Networks, , 491-496. Retrieved from www.scopus.com

Makkar, A., & Kumar, N. (2019). Cognitive spammer: A framework for PageRank analysis with split by over-sampling and train by under-fitting. Future Generation Computer Systems, 90, 381-404. doi:10.1016/j.future.2018.07.046

McKercher, B., & Chon, K. (2004). The over-reaction to SARS and the collapse of asian tourism. Annals of Tourism Research, 31(3), 716-719. doi:10.1016/j.annals.2003.11.002

Nielsen, E., & Ong, A. (2020). Economic impacts of COVID-19 on civil aviation. Economic Impact of the COVID-19 on Africa, Retrieved from www.scopus.com

Palmer, A., José Montaño, J., & Sesé, A. (2006). Designing an artificial neural network for forecasting tourism time series. Tourism Management, 27(5), 781-790. doi:10.1016/j.tourman.2005.05.006

Pardoe, D., Ryoo, M., & Miikkulainen, R. (2005). Evolving neural network ensembles for control problems. Paper presented at the GECCO 2005 - Genetic and Evolutionary Computation Conference, 1379-1384. doi:10.1145/1068009.1068230 Retrieved from www.scopus.com

Serel, D. A., & Moskowitz, H. (2008). Joint economic design of EWMA control charts for mean and variance. European Journal of Operational Research, 184(1), 157-168. doi:10.1016/j.ejor.2006.09.084

Sharda, R. (1994). Neural networks for the MS/OR analyst: An application bibliography. Interfaces, 24(2), 116-130. Retrieved from www.scopus.com

Tahir, M. F., Haoyong, C., Mehmood, K., Larik, N. A., Khan, A., & Javed, M. S. (2020). Short term load forecasting using bootstrap aggregating based ensemble artificial neural network. Recent Advances in Electrical and Electronic Engineering, 13(7), 980-992. doi:10.2174/2213111607666191111095329

Teixeira, J. P., & Fernandes, P. O. (2012). Tourism time series forecast-different ann architectures with time index input. Procedia Technology, 5(5), 445-454. Retrieved from www.scopus.com

Tosasukul, J., Budsaba, K., & Volodin, A. (2009). Dependent bootstrap confidence intervals for a population mean. Thailand Statistician, 7(1), 43-51. Retrieved from www.scopus.com

Tyrrell, T. J., & Johnston, R. J. (2006). The economic impacts of tourism: A special issue. Journal of Travel Research, 45(1), 3-7. doi:10.1177/0047287506288876

Zhou, B., Zhang, Y. -., Zhang, K., Yang, M. -., Chen, Y. -., Li, Y., . . . Ye, L. -. (2019). Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nat.Commun., 10(1), 1-9. Retrieved from www.scopus.com


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.