UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1463-9076
Main Author :Azmi Mohamed
Additional Authors :Suriani Abu Bakar
Title :Fabrication and application of composite adsorbents made by one-pot electrochemical exfoliation of graphite in surfactant ionic liquid/nanocellulose mixtures
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Physical Chemistry Chemical Physics
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Previously, surfactant-assisted exfoliated graphene oxide (sEGO) formed with the triple-chain surfactant TC14 (sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate) was applied in wastewater treatment. The extent of dye-removal and the adsorption capacity of the sEGO formed with this triple-chain surfactant outperformed those of two other systems, namely, the di-chain version of TC14 (AOT14; sodium 1,2-bis-(2,2-dimethyl-propoxycarbonyl)-ethanesulfonate) and the single-chain surfactant sodiumn-dodecylsulfate. In the present study, to further optimise the surfactant chemical structure, the sodium ion of TC14 was substituted with 1-butyl-3-methyl-imidazolium (BMIM) generating surfactant ionic liquids (SAILs; 1-butyl-3-imidazolium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate), hereafter denoted as BMIM-TC14. This SAIL, together with nanofibrillated kenaf cellulose (NFC), was used to electrochemically exfoliate graphite, yielding BMIM-TC14 sEGO/NFC composites. These highly hydrophobic polymer composites were then used for the removal of methylene blue (MB) from aqueous solution.1H NMR spectroscopy was used to elucidate the structure of the synthesised SAILs. The morphologies of the resulting nanocomposites were investigated using Raman spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. Analysis using small-angle neutron scattering was performed to examine the aggregation behaviour of sEGO and custom-made SAILs. Zeta potential, surface tension, and dynamic light-scattering measurements were used to study the aqueous properties and colloidal stability of the suspension. Amongst the surfactants tested, BMIM-TC14 sEGO/NFC exhibited the highest MB adsorption ability, achieving 99% dye removal under optimum conditions. These results highlight the importance of modifying the hydrophilic moieties of amphiphilic compounds to improve the performance of sEGO/NFC composites as effective adsorbents for wastewater treatment. ? the Owner Societies 2021.

References

Abdelkader, A. M., Cooper, A. J., Dryfe, R. A. W., & Kinloch, I. A. (2015). How to get between the sheets: A review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 7(16), 6944-6956. doi:10.1039/c4nr06942k

Ali, A., Bhushan, V., Malik, N. A., & Behera, K. (2013). Study of mixed micellar aqueous solutions of sodium dodecyl sulfate and amino acids. Colloid Journal, 75(4), 357-365. doi:10.1134/S1061933X13040029

Azizi Samir, M. A. S., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626. doi:10.1021/bm0493685

Baig, N., Ihsanullah, Sajid, M., & Saleh, T. A. (2019). Graphene-based adsorbents for the removal of toxic organic pollutants: A review. Journal of Environmental Management, 244, 370-382. doi:10.1016/j.jenvman.2019.05.047

Bhattacharjee, S. (2016). DLS and zeta potential - what they are and what they are not? Journal of Controlled Release, 235, 337-351. doi:10.1016/j.jconrel.2016.06.017

Bowers, J., Butts, C. P., Martin, P. J., Vergara-Gutierrez, M. C., & Heenan, R. K. (2004). Aggregation behavior of aqueous solutions of ionic liquids. Langmuir, 20(6), 2191-2198. doi:10.1021/la035940m

Brown, P., Butts, C. P., Eastoe, J., Fermin, D., Grillo, I., Lee, H. -., . . . Richardson, R. M. (2012). Anionic surfactant ionic liquids with 1-butyl-3-methyl-imidazolium cations: Characterization and application. Langmuir, 28(5), 2502-2509. doi:10.1021/la204557t

Chang, C. -., & Franses, E. I. (1995). Adsorption dynamics of surfactants at the air/water interface: A critical review of mathematical models, data, and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 100(C), 1-45. doi:10.1016/0927-7757(94)03061-4

Chen, L., Li, Y., Hu, S., Sun, J., Du, Q., Yang, X., . . . Xia, Y. (2016). Removal of methylene blue from water by cellulose/graphene oxide fibres. Journal of Experimental Nanoscience, 11(14), 1156-1170. doi:10.1080/17458080.2016.1198499

Ciesielski, A., & Samorì, P. (2014). Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews, 43(1), 381-398. doi:10.1039/c3cs60217f

Czajka, A., Hazell, G., & Eastoe, J. (2015). Surfactants at the design limit. Langmuir, 31(30), 8205-8217. doi:10.1021/acs.langmuir.5b00336

Dong, B., Li, N., Zheng, L., Yu, L., & Inoue, T. (2007). Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir, 23(8), 4178-4182. doi:10.1021/la0633029

Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Letters, 10(3), 751-758. doi:10.1021/nl904286r

Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240. doi:10.1039/b917103g

Eastoe, J., Paul, A., Downer, A., Steytler, D. C., & Rumsey, E. (2002). Effects of fluorocarbon surfactant chain structure on stability of water-in-carbon dioxide microemulsions. links between aqueous surface tension and microemulsion stability. Langmuir, 18(8), 3014-3017. doi:10.1021/la015576w

Eric Farrell, J. -. B. (2017). Guide for DLS Sample Preparation, Retrieved from www.scopus.com

Ferrari, A. C., & Robertson, J. (2001). Phys.Rev.B, 64(7), 1-13. Retrieved from www.scopus.com

Freundlich, H. M. F. (1906). Over the adsorption in solution. J.Phys.Chem., 57(385), 1100-1107. Retrieved from www.scopus.com

González, J. A., Villanueva, M. E., Piehl, L. L., & Copello, G. J. (2015). Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study. Chemical Engineering Journal, 280, 41-48. doi:10.1016/j.cej.2015.05.112

Guo, Y., Deng, J., Zhu, J., Zhou, X., & Bai, R. (2016). Removal of mercury(II) and methylene blue from a wastewater environment with magnetic graphene oxide: Adsorption kinetics, isotherms and mechanism. RSC Advances, 6(86), 82523-82536. doi:10.1039/c6ra14651a

Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling - an overview. RSC Advances, 2(16), 6380-6388. doi:10.1039/c2ra20340e

Haubner, K., Murawski, J., Olk, P., Eng, L. M., Ziegler, C., Adolphi, B., & Jaehne, E. (2010). The route to functional graphene oxide. ChemPhysChem, 11(10), 2131-2139. doi:10.1002/cphc.201000132

Hill, C., Umetsu, Y., Fujita, K., Endo, T., Sato, K., Yoshizawa, A., . . . Sagisaka, M. (2020). Design of surfactant tails for effective surface tension reduction and micellization in water and/or supercritical CO2. Langmuir, 36(48), 14829-14840. doi:10.1021/acs.langmuir.0c02835

Ho, Y. S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76(2), 183-191. doi:10.1205/095758298529326

Jamaluddin, N. A., Mohamed, A., Abu Bakar, S., Ardyani, T., Sagisaka, M., Suhara, S., . . . Eastoe, J. (2020). Highly branched triple-chain surfactant-mediated electrochemical exfoliation of graphite to obtain graphene oxide: Colloidal behaviour and application in water treatment. Physical Chemistry Chemical Physics, 22(22), 12732-12744. doi:10.1039/d0cp01243b

Kaszuba, M., Corbett, J., Watson, F. M., & Jones, A. (2010). High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1927), 4439-4451. doi:10.1098/rsta.2010.0175

Kaur, K., Jindal, R., & Meenu. (2019). Self-assembled GO incorporated CMC and chitosan-based nanocomposites in the removal of cationic dyes. Carbohydrate Polymers, 225 doi:10.1016/j.carbpol.2019.115245

Kaur, M., Singh, G., Damarla, K., Singh, G., Wang, H., Wang, J., . . . Kang, T. S. (2019). Aqueous systems of a surface active ionic liquid having an aromatic anion: Phase behavior, exfoliation of graphene flakes and its hydrogelation. Physical Chemistry Chemical Physics, 22(1), 169-178. doi:10.1039/c9cp04449c

Kim, F., Cote, L. J., & Huang, J. (2010). Graphene oxide: Surface activity and two-dimensional assembly. Advanced Materials, 22(17), 1954-1958. doi:10.1002/adma.200903932

Krishnan, D., Kim, F., Luo, J., Cruz-Silva, R., Cote, L. J., Jang, H. D., & Huang, J. (2012). Energetic graphene oxide: Challenges and opportunities. Nano Today, 7(2), 137-152. doi:10.1016/j.nantod.2012.02.003

Kumar, P., & Bohidar, H. B. (2010). Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361(1-3), 13-24. doi:10.1016/j.colsurfa.2010.03.009

Kureha, T., Hayashi, K., Li, X., & Shibayama, M. (2020). Mechanical properties of temperature-responsive gels containing ethylene glycol in their side chains. Soft Matter, 16(48), 10946-10953. doi:10.1039/d0sm01436b

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403. doi:10.1021/ja02242a004

Li, T., Li, N., Liu, J., Cai, K., Foda, M. F., Lei, X., & Han, H. (2015). Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as "spacers" for high-performance application in supercapacitors. Nanoscale, 7(2), 659-669. doi:10.1039/c4nr05473c

Lindman, B., Karlström, G., & Stigsson, L. (2010). On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 156(1), 76-81. doi:10.1016/j.molliq.2010.04.016

Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials, 18(10), 1518-1525. doi:10.1002/adfm.200700797

Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K. A., Celik, O., . . . Chhowalla, M. (2009). Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials, 19(16), 2577-2583. doi:10.1002/adfm.200900166

McCoy, T. M., Holt, S. A., Rozario, A. M., Bell, T. D. M., & Tabor, R. F. (2017). Adv.Mater.Interfaces, 4, 1-12. Retrieved from www.scopus.com

Minnick, D. L., Flores, R. A., Destefano, M. R., & Scurto, A. M. (2016). Cellulose solubility in ionic liquid mixtures: Temperature, cosolvent, and antisolvent effects. Journal of Physical Chemistry B, 120(32), 7906-7919. doi:10.1021/acs.jpcb.6b04309

Mohamed, A., Anas, A. K., Abu Bakar, S., Aziz, A. A., Sagisaka, M., Brown, P., . . . Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 292(11), 3013-3023. doi:10.1007/s00396-014-3354-1

Mohamed, A., Ardyani, T., Bakar, S. A., Sagisaka, M., Umetsu, Y., Hussin, M. R. M., . . . Eastoe, J. (2018). Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydrate Polymers, 201, 48-59. doi:10.1016/j.carbpol.2018.08.040

Mohamed, A., Sagisaka, M., Hollamby, M., Rogers, S. E., Heenan, R. K., Dyer, R., & Eastoe, J. (2012). Hybrid CO 2-philic surfactants with low fluorine content. Langmuir, 28(15), 6299-6306. doi:10.1021/la3005322

Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., . . . Eastoe, J. (2010). Universal surfactant for water, oils, and CO2. Langmuir, 26(17), 13861-13866. doi:10.1021/la102303q

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. doi:10.1039/c0cs00108b

Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: The neglected role of the surfactant tail. Langmuir, 18(1), 31-38. doi:10.1021/la010831y

Nayl, A. A., Abd-Elhamid, A. I., Abu-Saied, M. A., El-Shanshory, A. A., Soliman, H. M. A., Akl, M. A., & Aly, H. F. (2020). A novel method for highly effective removal and determination of binary cationic dyes in aqueous media using a cotton-graphene oxide composite. RSC Advances, 10(13), 7791-7802. doi:10.1039/c9ra09872k

Ogunleye, D. T., Akpotu, S. O., & Moodley, B. (2020). Adsorption of sulfamethoxazole and reactive blue 19 using graphene oxide modified with imidazolium based ionic liquid. Environmental Technology and Innovation, 17 doi:10.1016/j.eti.2020.100616

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58

Pertsin, A., & Grunze, M. (2004). Water-graphite interaction and behavior of water near the graphite surface. Journal of Physical Chemistry B, 108(4), 1357-1364. doi:10.1021/jp0356968

Pourjavadi, A., Nazari, M., Kabiri, B., Hosseini, S. H., & Bennett, C. (2016). Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue. RSC Advances, 6(13), 10430-10437. doi:10.1039/c5ra21629j

Qi, Y., Yang, M., Xu, W., He, S., & Men, Y. (2017). Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. Journal of Colloid and Interface Science, 486, 84-96. doi:10.1016/j.jcis.2016.09.058

Qin, D., Liu, Z., Bai, H., & Sun, D. D. (2017). Three-dimensional architecture constructed from a graphene oxide nanosheet-polymer composite for high-flux forward osmosis membranes. Journal of Materials Chemistry A, 5(24), 12183-12192. doi:10.1039/c7ta00741h

Ramesha, G. K., Vijaya Kumara, A., Muralidhara, H. B., & Sampath, S. (2011). Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science, 361(1), 270-277. doi:10.1016/j.jcis.2011.05.050

Ravula, S., Baker, S. N., Kamath, G., & Baker, G. A. (2015). Ionic liquid-assisted exfoliation and dispersion: Stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale, 7(10), 4338-4353. doi:10.1039/c4nr01524j

Ren, F., Li, Z., Tan, W. -., Liu, X. -., Sun, Z. -., Ren, P. -., & Yan, D. -. (2018). Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. Journal of Colloid and Interface Science, 532, 58-67. doi:10.1016/j.jcis.2018.07.101

Rosen, M. J. (1989). Surfactants and Interfacial Phenomena, Retrieved from www.scopus.com

Roy, D., Semsarilar, M., Guthrie, J. T., & Perrier, S. (2009). Cellulose modification by polymer grafting: A review. Chemical Society Reviews, 38(7), 2046-2064. doi:10.1039/b808639g

Senthilkumaar, S., Varadarajan, P. R., Porkodi, K., & Subbhuraam, C. V. (2005). Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284(1), 78-82. doi:10.1016/j.jcis.2004.09.027

Sham, A. Y. W., & Notley, S. M. (2018). Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 6(1), 495-504. doi:10.1016/j.jece.2017.12.028

Singh, G., Singh, G., & Kang, T. S. (2016). Micellization behavior of surface active ionic liquids having aromatic counterions in aqueous media. Journal of Physical Chemistry B, 120(6), 1092-1105. doi:10.1021/acs.jpcb.5b09688

Singh, T., & Kumar, A. (2007). Aggregation behavior of ionic liquids in aqueous solutions: Effect of alkyl chain length, cations, and anions. Journal of Physical Chemistry B, 111(27), 7843-7851. doi:10.1021/jp0726889

Skaltsas, T., Ke, X., Bittencourt, C., & Tagmatarchis, N. (2013). Ultrasonication induces oxygenated species and defects onto exfoliated graphene. Journal of Physical Chemistry C, 117(44), 23272-23278. doi:10.1021/jp4057048

Song, S., Ma, Y., Shen, H., Zhang, M., & Zhang, Z. (2015). Removal and recycling of ppm levels of methylene blue from an aqueous solution with graphene oxide. RSC Advances, 5(35), 27922-27932. doi:10.1039/c4ra16982d

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., . . . Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034

Stone, M. T., Smith Jr., P. G., Da Rocha, S. R. P., Rossky, P. J., & Johnston, K. P. (2004). Low interfacial free volume of stubby surfactants stabilizes water-in-carbon dioxide microemulsions. Journal of Physical Chemistry B, 108(6), 1962-1966. doi:10.1021/jp036224w

Su, J., He, S., Zhao, Z., Liu, X., & Li, H. (2018). Efficient preparation of cetyltrimethylammonium bromide-graphene oxide composite and its adsorption of congo red from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 554, 227-236. doi:10.1016/j.colsurfa.2018.06.048

Sun, Y., Zheng, H., Wang, C., Yang, M., Zhou, A., & Duan, H. (2016). Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: Towards a flexible and versatile nanohybrid electrode. Nanoscale, 8(3), 1523-1534. doi:10.1039/c5nr06912b

Tan, K. L., & Hameed, B. H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25-48. doi:10.1016/j.jtice.2017.01.024

Tardy, B. L., Yokota, S., Ago, M., Xiang, W., Kondo, T., Bordes, R., & Rojas, O. J. (2017). Nanocellulose–surfactant interactions. Current Opinion in Colloid and Interface Science, 29, 57-67. doi:10.1016/j.cocis.2017.02.004

Tshikovhi, A., Mishra, S. B., & Mishra, A. K. (2020). Nanocellulose-based composites for the removal of contaminants from wastewater. International Journal of Biological Macromolecules, 152, 616-632. doi:10.1016/j.ijbiomac.2020.02.221

Vincent, T., Taulemesse, J. -., Dauvergne, A., Chanut, T., Testa, F., & Guibal, E. (2014). Thallium(I) sorption using prussian blue immobilized in alginate capsules. Carbohydrate Polymers, 99, 517-526. doi:10.1016/j.carbpol.2013.08.076

Wang, Z., Song, L., Wang, Y., Zhang, X. -., & Yao, J. (2021). Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. Journal of Physics and Chemistry of Solids, 150 doi:10.1016/j.jpcs.2020.109839

Wei, X., Huang, T., Yang, J. -., Zhang, N., Wang, Y., & Zhou, Z. -. (2017). Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. Journal of Hazardous Materials, 335, 28-38. doi:10.1016/j.jhazmat.2017.04.030

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184. doi:10.1016/j.cis.2014.04.002

Yan, H., Wu, H., Li, K., Wang, Y., Tao, X., Yang, H., . . . Cheng, R. (2015). Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water. ACS Applied Materials and Interfaces, 7(12), 6690-6697. doi:10.1021/acsami.5b00053

Yusuf, M., Khan, M. A., Otero, M., Abdullah, E. C., Hosomi, M., Terada, A., & Riya, S. (2017). Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid and Interface Science, 493, 51-61. doi:10.1016/j.jcis.2017.01.015

Zhang, F., Li, S., Zhang, Q., Liu, J., Zeng, S., Liu, M., & Sun, D. (2019). Adsorption of different types of surfactants on graphene oxide. Journal of Molecular Liquids, 276, 338-346. doi:10.1016/j.molliq.2018.12.009

Zhang, K., Zhang, X., Li, H., Xing, X., Jin, L., Cao, Q., & Li, P. (2018). Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil. Journal of Materials Science, 53(4), 2484-2496. doi:10.1007/s10853-017-1729-7

Zhang, L., Zhang, Z., He, C., Dai, L., Liu, J., & Wang, L. (2014). Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano, 8(7), 6663-6670. doi:10.1021/nn502289w

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.