UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1071-7544
Main Author :Eissa Manar
Additional Authors :Saripah Salbiah Syed Abdul Azziz
Title :Fabrication and characterization of agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Drug Delivery
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Aquilaria malaccensis has been traditionally used to treat several medical disorders including inflammation. However, the traditional claims of this plant as an anti-inflammatory agent has not been substantially evaluated using modern scientific techniques. The main objective of this study was to evaluate the anti-inflammatory effect of Aquilaria malacensis leaf extract (ALEX-M) and potentiate its activity through nano-encapsulation. The extract-loaded nanocapsules were fabricated using water-in-oil-in-water (w/o/w) emulsion method and characterized via multiple techniques including DLS, TEM, FTIR, and TGA. The toxicity and the anti-inflammatory activity of ALEX-M and the extract-loaded nanocapsules (ALEX-M-PNCs) were evaluated in-vitro on RAW 264.7 macrophages and in-vivo on zebrafish embryos. The nanocapsules demonstrated spherical shape with mean particle diameter of 167.13 � 1.24 nm, narrow size distribution (PDI = 0.29 � 0.01), and high encapsulation efficiency (87.36 � 1.81%). ALEX-M demonstrated high viability at high concentrations in RAW 264.7 cells and zebrafish embryos, however, ALEX-M-PNCs showed relatively higher cytotoxicity. Both free and nanoencapsulated extract expressed anti-inflammatory effects through significant reduction of the pro-inflammatory mediator nitric oxide (NO) production in LPS/IFN?-stimulated RAW 264.7 macrophages and zebrafish embryos in a concentration-dependent manner. The findings highlight that ALEX-M can be recognized as a potential anti-inflammatory agent, and its anti-inflammatory activity can be potentiated by nano-encapsulation. Further studies are warranted toward investigation of the mechanistic and immunomodulatory roles of ALEX-M. ? 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

References

Abas, F., Lajis, N. H., Israf, D. A., Khozirah, S., & Kalsom, Y. U. (2006). Antioxidant and nitric oxide inhibition activities of selected malay traditional vegetables. Food Chemistry, 95(4), 566-573. doi:10.1016/j.foodchem.2005.01.034

Adam, A. Z., Lee, S. Y., & Mohamed, R. (2017). Pharmacological properties of agarwood tea derived from aquilaria (thymelaeaceae) leaves: An emerging contemporary herbal drink. Journal of Herbal Medicine, 10, 37-44. doi:10.1016/j.hermed.2017.06.002

Aisha, A. F. A., Abdulmajid, A. M. S., Ismail, Z., Alrokayan, S. A., & Abu-Salah, K. M. (2015). Development of polymeric nanoparticles of garcinia mangostana xanthones in eudragit RL100/RS100 for anti-colon cancer drug delivery. Journal of Nanomaterials, 2015 doi:10.1155/2015/701979

Alafiatayo, A. A., Lai, K. -., Syahida, A., Mahmood, M., & Shaharuddin, N. A. (2019). Phytochemical evaluation, embryotoxicity, and teratogenic effects of curcuma longa extract on zebrafish (danio rerio). Evidence-Based Complementary and Alternative Medicine, 2019 doi:10.1155/2019/3807207

Alishah, H., Pourseyedi, S., Ebrahimipour, S. Y., Mahani, S. E., & Rafiei, N. (2017). Green synthesis of starch-mediated CuO nanoparticles: Preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rendiconti Lincei, 28(1), 65-71. doi:10.1007/s12210-016-0574-y

Armendáriz-Barragán, B., Zafar, N., Badri, W., Galindo-Rodríguez, S. A., Kabbaj, D., Fessi, H., & Elaissari, A. (2016). Plant extracts: From encapsulation to application. Expert Opinion on Drug Delivery, 13(8), 1165-1175. doi:10.1080/17425247.2016.1182487

Badawi, N. M., Hteaima, M. H., El-Say, K. M., Aattia, D. A., Ael-Nabarawi, M. A., & Elmazar, M. M. (2018). Pomegranate extract-loaded solid lipid nanoparticles: Design, optimization, and in vitro cytotoxicity study. International Journal of Nanomedicine, 13, 1313-1326. doi:10.2147/IJN.S154033

Bakar, F. I. A., Bakar, M. F. A., Abdullah, N., Endrini, S., & Rahmat, A. (2018). A review of malaysian medicinal plants with potential anti-inflammatory activity. Advances in Pharmacological Sciences, 2018 doi:10.1155/2018/8603602

Basnet, R. M., Guarienti, M., & Memo, M. (2017). Zebrafish embryo as an in vivo model for behavioral and pharmacological characterization of methylxanthine drugs. International Journal of Molecular Sciences, 18(3) doi:10.3390/ijms18030596

Bennet, D., Kang, S. C., Gang, J., & Kim, S. (2013). Photoprotective effects of apple peel nanoparticles. International Journal of Nanomedicine, 9(1), 93-108. doi:10.2147/IJN.S54048

Borges, R. S., Keita, H., Ortiz, B. L. S., dos Santos Sampaio, T. I., Ferreira, I. M., Lima, E. S., . . . Carvalho, J. C. T. (2018). Anti-inflammatory activity of nanoemulsions of essential oil from rosmarinus officinalis L.: In vitro and in zebrafish studies. Inflammopharmacology, 26(4), 1057-1080. doi:10.1007/s10787-017-0438-9

Brundo, M. V., & Salvaggio, A. (2018). Zebrafish or danio rerio: A new model in nanotoxicology study. Recent Advances in Zebrafish Researches., Retrieved from www.scopus.com

Chakrabarty, K., Kumar, A., & Menon, V. (1994). Trade in agarwood. Trade in Agarwood, Retrieved from www.scopus.com

Chakraborty, C., Sharma, A. R., Sharma, G., & Lee, S. -. (2016). Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. Journal of Nanobiotechnology, 14(1) doi:10.1186/s12951-016-0217-6

Chung, L. Y., Soo, W. K., Chan, K. Y., Mustafa, M. R., Goh, S. H., & Imiyabir, Z. (2009). Lipoxygenase inhibiting activity of some malaysian plants. Pharmaceutical Biology, 47(12), 1142-1148. doi:10.3109/13880200903008724

Cismaru, L., & Popa, M. (2010). Polymeric nanoparticles with biomedical applications. Revue Roumaine De Chimie, 55(8), 433-442. Retrieved from www.scopus.com

d’Amora, M., Cassano, D., Pocoví-Martínez, S., Giordani, S., & Voliani, V. (2018). Biodistribution and biocompatibility of passion fruit-like nano-architectures in zebrafish. Nanotoxicology, 12(8), 914-922. doi:10.1080/17435390.2018.1498551

De Luca, E., Zaccaria, G. M., Hadhoud, M., Rizzo, G., Ponzini, R., Morbiducci, U., & Santoro, M. M. (2014). ZebraBeat : A flexible platform for the analysis of the cardiac rate in zebrafish embryos. Scientific Reports, 4 doi:10.1038/srep04898

Eissa, M. A., Hashim, Y. Z. H., El-Kersh, D. M., Abd-Azziz, S. S. S., Salleh, H. M., Isa, M. L. M., & Warif, N. M. A. (2020). Metabolite profiling of aquilaria malaccensis leaf extract using liquid chromatography-Q-TOF-mass spectrometry and investigation of its potential antilipoxygenase activity in-vitro. Processes, 8(2) doi:10.3390/pr8020202

Evensen, L., Johansen, P. L., Koster, G., Zhu, K., Herfindal, L., Speth, M., . . . Griffiths, G. (2016). Zebrafish as a model system for characterization of nanoparticles against cancer. Nanoscale, 8(2), 862-877. doi:10.1039/c5nr07289a

Fornaguera, C., & Solans, C. (2018). Analytical methods to characterize and purify polymeric nanoparticles. International Journal of Polymer Science, 2018 doi:10.1155/2018/6387826

Fürst, R., & Zündorf, I. (2014). Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators of Inflammation, 2014 doi:10.1155/2014/146832

Gasparrini, M., Forbes-Hernandez, T. Y., Giampieri, F., Afrin, S., Alvarez-Suarez, J. M., Mazzoni, L., . . . Battino, M. (2017). Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food and Chemical Toxicology, 102, 1-10. doi:10.1016/j.fct.2017.01.018

Gautam, R., & Jachak, S. M. (2009). Recent developments in anti-inflammatory natural products. Medicinal Research Reviews, 29(5), 767-820. doi:10.1002/med.20156

Ghayempour, S., & Montazer, M. (2016). A robust friendly nano-encapsulated plant extract in hydrogel tragacanth gum on cotton fabric through one single step in-situ synthesis and fabrication. Cellulose, 23(4), 2561-2572. doi:10.1007/s10570-016-0958-2

Ghayempour, S., & Montazer, M. (2017). Tragacanth nanocapsules containing chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric. Carbohydrate Polymers, 170, 234-240. doi:10.1016/j.carbpol.2017.04.088

Ghayempour, S., Montazer, M., & Mahmoudi Rad, M. (2016). Encapsulation of aloe vera extract into natural tragacanth gum as a novel green wound healing product. International Journal of Biological Macromolecules, 93, 344-349. doi:10.1016/j.ijbiomac.2016.08.076

Ghayempour, S., Montazer, M., & Mahmoudi Rad, M. (2016). Simultaneous encapsulation and stabilization of aloe vera extract on cotton fabric for wound dressing application. RSC Advances, 6(113), 111895-111902. doi:10.1039/c6ra22485g

Ghayempour, S., Montazer, M., & Mahmoudi Rad, M. (2015). Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. International Journal of Biological Macromolecules, 81, 514-520. doi:10.1016/j.ijbiomac.2015.08.041

Ghayempour, S., Montazer, M., & Mahmoudi Rad, M. (2016). Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydrate Polymers, 136, 232-241. doi:10.1016/j.carbpol.2015.09.001

Giacalone, G., Tsapis, N., Mousnier, L., Chacun, H., & Fattal, E. (2018). PLA-PEG nanoparticles improve the anti-inflammatory effect of rosiglitazone on macrophages by enhancing drug uptake compared to free rosiglitazone. Materials, 11(10) doi:10.3390/ma11101845

Hani, N., Azarian, M. H., Torkamani, A. E., & Kamil Mahmood, W. A. (2016). Characterisation of gelatin nanoparticles encapsulated with moringa oleifera bioactive extract. International Journal of Food Science and Technology, 51(11), 2327-2337. doi:10.1111/ijfs.13211

Hickey, J. W., Santos, J. L., Williford, J. -., & Mao, H. -. (2015). Control of polymeric nanoparticle size to improve therapeutic delivery. Journal of Controlled Release, 219, 536-547. doi:10.1016/j.jconrel.2015.10.006

Hu, Y. L., Qi, W., Han, F., Shao, J. Z., & Gao, J. Q. (2011). Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. International Journal of Nanomedicine, 6, 3351-3359. Retrieved from www.scopus.com

Hwang, J. -., Kim, K. -., Ryu, S. -., & Lee, B. -. (2016). Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chemico-Biological Interactions, 248, 1-7. doi:10.1016/j.cbi.2016.01.020

Islam, M. T., Streck, L., Paz, M. F. C. J., Sousa, J. M. C., Alencar, M. V. O. B., Mata, A. M. O. F., . . . Melo-Cavalcante, A. A. C. (2016). Preparation of phytol-loaded nanoemulsion and screening for antioxidant capacity. Int Arch Med, 9(70), 1-15. Retrieved from www.scopus.com

Ismail, H. F., Hashim, Z., Soon, W. T., Rahman, N. S. A., Zainudin, A. N., & Majid, F. A. A. (2017). Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. Journal of Traditional and Complementary Medicine, 7(4), 452-465. doi:10.1016/j.jtcme.2016.12.006

Jo, N. Y. (2018). The effect of woogakseungmatang extract on NO production in LPS-stimulated RAW 264. 7 cells. Korean J Acupunct, 35, 166-173. Retrieved from www.scopus.com

Karabay, A. Z., Koç, A., & Özkan, T. (2012). Effects of glucosamine on LPS/IFN-γ induced RAW 264. 7 macrophage apoptosis. Ankara Üniversitesi Tıp Fakültesi Mecmuası, 65, 11-18. Retrieved from www.scopus.com

Karimi, E., Jaafar, H. Z. E., & Ahmad, S. (2013). Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of labisia pumila benth: From microwave obtained extracts. BMC Complementary and Alternative Medicine, 13 doi:10.1186/1472-6882-13-20

Katmıs, A., Fide, S., Karaismailoglu, S., & Derman, S. (2018). Synthesis and characterization methods of polymeric nanoparticles. Characterization and Application of Nanomaterials, 1, 1-9. Retrieved from www.scopus.com

Kiani, A., Shahbazi, M., & Asempour, H. (2012). Hydrogel membranes based on gum tragacanth with tunable structure and properties. I. preparation method using taguchi experimental design. Journal of Applied Polymer Science, 124(1), 99-108. doi:10.1002/app.35038

Kim, E. S., Lee, J. -., & Lee, H. G. (2016). Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. Journal of Agricultural and Food Chemistry, 64(23), 4765-4771. doi:10.1021/acs.jafc.6b00911

Kwon, D. H., Jeong, J. W., Choi, E. O., Lee, H. W., Lee, K. W., Kim, K. Y., . . . Choi, Y. H. (2017). Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by mori folium in lipopolysaccharide-stimulated macrophages and zebrafish. Anais Da Academia Brasileira De Ciencias, 89(1), 661-674. doi:10.1590/0001-3765201720160836

Kwon, M. C., Choi, W. Y., Seo, Y. C., Kim, J. S., Yoon, C. S., Lim, H. W., . . . Lee, H. Y. (2012). Enhancement of the skin-protective activities of centella asiatica L. urban by a nano-encapsulation process. Journal of Biotechnology, 157(1), 100-106. doi:10.1016/j.jbiotec.2011.08.025

Lee, E. -., Park, H. -., Kim, D. -., Jung, H. -., Kang, I. -., & Cho, Y. -. (2019). Elicitor-treated extracts of saururus chinensis inhibit the expression of inducible nitric oxide synthase and cyclooxygenase-2 enzyme expression in raw cells for suppression of inflammation. Journal of Applied Biological Chemistry, 62(2), 149-155. doi:10.3839/jabc.2019.021

Lee, J. -., Ko, J. -., Kim, E. -., Hwang, E. -., Park, C. S., Lee, J. -., . . . Jeon, Y. -. (2017). Identification and large isolation of an anti-inflammatory compound from an edible brown seaweed, undariopsis peterseniana, and evaluation on its anti-inflammatory effect in in vitro and in vivo zebrafish. Journal of Applied Phycology, 29(3), 1587-1596. doi:10.1007/s10811-016-1012-3

Lee, M. -., Kwon, M. -., Choi, J. -., Shin, T., No, H. K., Choi, J. -., . . . Kim, H. -. (2012). Anti-inflammatory activities of an ethanol extract of ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. Journal of Agricultural and Food Chemistry, 60(36), 9120-9129. doi:10.1021/jf3022018

Lee, S. -., Ko, C. -., Jee, Y., Jeong, Y., Kim, M., Kim, J. -., & Jeon, Y. -. (2013). Anti-inflammatory effect of fucoidan extracted from ecklonia cava in zebrafish model. Carbohydrate Polymers, 92(1), 84-89. doi:10.1016/j.carbpol.2012.09.066

Liao, Y. -., Chiou, M. -., Tsai, J. -., Wen, C. -., Wang, Y. -., Cheng, C. -., & Chen, Y. -. (2011). Resveratrol treatment attenuates the wound-induced inflammation in zebrafish larvae through the suppression of myeloperoxidase expression. Journal of Food and Drug Analysis, 19(2), 167-173+241. Retrieved from www.scopus.com

Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, 149-173. doi:10.1146/annurev-chembioeng-073009-100847

Majewski, M., Kasica, N., Jakubowski, P., & Podlasz, P. (2017). Influence of fresh garlic (allium sativum L.) juice on zebrafish (danio rerio) embryos developmental effects. Journal of Elementology, 22(2), 475-486. doi:10.5601/jelem.2016.21.4.1261

Mao, C. -., Zhang, X. -., Johnson, A., He, J. -., & Kong, Z. -. (2018). Modulation of diabetes mellitus-induced male rat reproductive dysfunction with micro-nanoencapsulated echinacea purpurea ethanol extract. BioMed Research International, 2018 doi:10.1155/2018/4237354

Marrassini, C., Peralta, I., & Anesini, C. (2018). Comparative study of the polyphenol content-related anti-inflammatory and antioxidant activities of two urera aurantiaca specimens from different geographical areas. Chinese Medicine (United Kingdom), 13(1) doi:10.1186/s13020-018-0181-1

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428-435. doi:10.1038/nature07201

Mendes, A. N., Filgueiras, L. A., Siqueira, M. R. P., Barbosa, G. M., Holandino, C., Moreira, D. L., . . . Nele, M. (2017). Encapsulation of piper cabralanum (piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells. International Journal of Nanomedicine, 12, 8363-8373. doi:10.2147/IJN.S134756

Mennen, L. I., Sapinho, D., De Bree, A., Arnault, N., Bertrais, S., Galan, P., & Hercberg, S. (2004). Consumption of foods rich in flavonoids is related to A decreased cardiovascular risk in apparently healthy french women. Journal of Nutrition, 134(4), 923-926. doi:10.1093/jn/134.4.923

Mohammadifar, M. A., Musavi, S. M., Kiumarsi, A., & Williams, P. A. (2006). Solution properties of targacanthin (water-soluble part of gum tragacanth exudate from astragalus gossypinus). International Journal of Biological Macromolecules, 38(1), 31-39. doi:10.1016/j.ijbiomac.2005.12.015

Nazarzadeh Zare, E., Makvandi, P., & Tay, F. R. (2019). Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydrate Polymers, 212, 450-467. doi:10.1016/j.carbpol.2019.02.076

Nikapitiya, C., Dananjaya, S. H. S., De Silva, B. C. J., Heo, G. -., Oh, C., De Zoysa, M., & Lee, J. (2018). Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against aeromonas hydrophila infection. Fish and Shellfish Immunology, 76, 240-246. doi:10.1016/j.fsi.2018.03.010

Nur, M., & Vasiljevic, T. (2018). Insulin inclusion into a tragacanth hydrogel: An oral delivery system for insulin. Materials, 11(1) doi:10.3390/ma11010079

Okoli, C. O., & Akah, P. A. (2004). Mechanisms of the anti-inflammatory activity of the leaf extracts of culcasia scandens P. beauv (araceae). Pharmacology Biochemistry and Behavior, 79(3), 473-481. doi:10.1016/j.pbb.2004.08.012

Ong, K. J., Zhao, X., Thistle, M. E., Maccormack, T. J., Clark, R. J., Ma, G., . . . Goss, G. G. (2014). Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology, 8(3), 295-304. doi:10.3109/17435390.2013.778345

Oskoueian, E., Abdullah, N., Saad, W. Z., Omar, A. R., Ahmad, S., Kuan, W. B., . . . Ho, Y. W. (2011). Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from jatropha curcas linn. Journal of Medicinal Plants Research, 5(1), 49-57. Retrieved from www.scopus.com

Pal, S. L., Jana, U., Manna, P. K., Mohanta, G. P., & Manavalan, R. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 1(6), 228-234. Retrieved from www.scopus.com

Pesic, M., & Greten, F. R. (2016). Inflammation and cancer: Tissue regeneration gone awry. Current Opinion in Cell Biology, 43, 55-61. doi:10.1016/j.ceb.2016.07.010

Ponrasu, T., Ganeshkumar, M., & Suguna, L. (2012). Developmental toxicity evaluation of ethanolic extract of annona squamosa in zebrafish (danio rerio) embryo. J Pharm Res, 5(1), 277-279. Retrieved from www.scopus.com

Pretsch, E., Bühlmann, P., & Affolter, C. (2000). Structure Determination of Organic Compounds, Retrieved from www.scopus.com

Rao, U. S. M., Ahmad, B. A., & Mohd, K. M. (2016). In vitro nitric oxide scavenging and anti inflammatory activities of different solvent extracts of various parts of musa paradisiaca. [Aktiviti pemerangkapan nitrik oksida dan anti-radang secara in vitro oleh ekstrak pelarut berbeza dari pelbagai bahagian Musa paradisiaca] Malaysian Journal of Analytical Sciences, 20(5), 1191-1202. doi:10.17576/mjas-2016-2005-26

Riyajan, S. -., & Nuim, J. (2013). Interaction of green polymer blend of modified sodium alginate and carboxylmethyl cellulose encapsulation of turmeric extract. International Journal of Polymer Science, 2013 doi:10.1155/2013/364253

Sadat Hosseini, M., Hemmati, K., & Ghaemy, M. (2016). Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery. International Journal of Biological Macromolecules, 82, 806-815. doi:10.1016/j.ijbiomac.2015.09.067

Santoriello, C., & Zon, L. I. (2012). Hooked! modeling human disease in zebrafish. Journal of Clinical Investigation, 122(7), 2337-2343. doi:10.1172/JCI60434

Schäcke, H., Döcke, W. -., & Asadullah, K. (2002). Mechanisms involved in the side effects of glucocorticoids. Pharmacology and Therapeutics, 96(1), 23-43. doi:10.1016/S0163-7258(02)00297-8

Shaikh, A., Kohale, K., Ibrahim, M., & Khan, M. (2019). Teratogenic effects of aqueous extract of ficus glomerata leaf during embryonic development in zebrafish (danio rerio). Journal of Applied Pharmaceutical Science, 9(5), 107-111. doi:10.7324/JAPS.2019.90514

Shanmugapriya, P., Elansekaran, S., & Ramamurthy, M. (2019). Teratogenicity testing of siddha formulation of nilavembu kudineer on zebrafish (danio rerio) embryo. Asian J Pharm Clin Res, 12, 246-250. Retrieved from www.scopus.com

Stecanella, L. A., Taveira, S. F., Marreto, R. N., Valadares, M. C., Vieira, M. S., Kato, M. J., & Lima, E. M. (2013). Development and characterization of PLGA nanocapsules of grandisin isolated from virola surinamensis: In vitro release and cytotoxicity studies. Revista Brasileira De Farmacognosia, 23(1), 153-159. doi:10.1590/S0102-695X2012005000128

Strasser, M., Noriega, P., Löbenberg, R., Bou-Chacra, N., & Bacchi, E. M. (2014). Antiulcerogenic potential activity of free and nanoencapsulated passiflora serratodigitata L. extracts. BioMed Research International, 2014 doi:10.1155/2014/434067

Sy Mohamad, S. F., Mohd, S. F., Abdul Munaim, M. S., Mohamad, S., & Wan Sulaiman, W. M. A. (2019). Proximate composition, minerals contents, functional properties of mastura variety jackfruit (artocarpus heterophyllus) seeds and lethal effects of its crude extract on zebrafish (danio rerio) embryos. Food Research, 3(5), 546-555. doi:10.26656/fr.2017.3(5).095

Zulkifle, N. L., Sabri, N. A., Mhd Omar, N. A., Shaari, M. R., & Tajuddin, S. N. (2018). Acute and sub-chronic toxicity study of aquilaria malaccensis leaves extract in sprague-dawley rats. Chemistry of Advanced Materials, 3(1), 8-15. Retrieved from www.scopus.com


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.