UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :L Education
ISSN :0256-1115
Main Author :Mohd Hafiz Dzarfan Othman
Additional Authors :Suriani Abu Bakar
Title :Fabrication and characterization of robust zirconia-kaolin hollow fiber membrane: alkaline dissolution study in ammonia solution
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Korean Journal of Chemical Engineering
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Kaolin has been found to be a more economical alternative in ceramic hollow membrane fabrication compared to alumina, silica, and zirconia despite having similar properties. However, it was discovered that apart from having high mechanical strength and the ability to withstand high operational temperature, the kaolin membrane has the tendency to dissolve in a high alkaline solution. Hence, in this study, zirconia (ZrO2) was imposed to kaolin suspension as co-starting material due to its stable hexagonal properties with kaolin to overcome this drawback. To study the dissolution property of the modified kaolin-based membrane, a phase inversion technique was used to fabricate zirconia-kaolin hollow fiber membrane (ZKHFM) followed by immersion in ammonium hydroxide (NH4OH) as an alkaline solution. Ammonia was aptly chosen for it being considered as one of the pollutants to be removed from wastewater. The mechanism, morphology and properties of the membrane were investigated in terms of sintering temperature, morphology, mechanical strength, pore size and porosity The results showed that ZKHFM with 10 wt% (ZK-10) with sintering temperature of 1,200 �C had the best performance in terms of having high mechanical strength (21MPa), excellent permeation flux (?1,600 Lm2/h) and lowest dissolution (0.01 g dissolute) at pH 13, indicating the ability of ZKHFM to be used in alkaline solution. ? 2021, The Korean Institute of Chemical Engineers.

References

Abd Aziz, M. H., Othman, M. H. D., Hashim, N. A., Adam, M. R., & Mustafa, A. (2019). Fabrication and characterization of mullite ceramic hollow fiber membrane from natural occurring ball clay. Applied Clay Science, 177, 51-62. doi:10.1016/j.clay.2019.05.003

Abdullah, N., Rahman, M. A., Othman, M. H. D., Ismail, A. F., Jaafar, J., & Aziz, A. A. (2016). Preparation and characterization of self-cleaning alumina hollow fiber membrane using the phase inversion and sintering technique. Ceramics International, 42(10), 12312-12322. doi:10.1016/j.ceramint.2016.05.003

Aziz, M. H. A., Othman, M. H. D., Hashim, N. A., Rahman, M. A., Jaafar, J., Hubadillah, S. K., & Tai, Z. S. (2019). Pretreated aluminium dross waste as a source of inexpensive alumina-spinel composite ceramic hollow fibre membrane for pretreatment of oily saline produced water. Ceramics International, 45(2), 2069-2078. doi:10.1016/j.ceramint.2018.10.110

Boullosa-Eiras, S., Vanhaecke, E., Zhao, T., Chen, D., & Holmen, A. (2011). Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2-Al2O3 and CeO2-al 2O3 nanocomposites. Catalysis Today, 166(1), 10-17. doi:10.1016/j.cattod.2010.05.038

Boussemghoune, M., Chikhi, M., Balaska, F., Ozay, Y., Dizge, N., & Kebabi, B. (2020). Preparation of a zirconia-based ceramic membrane and its application for drinking water treatment. Symmetry, 12(6) doi:10.3390/SYM12060933

Bouzid Rekik, S., Bouaziz, J., Deratani, A., & Baklouti, S. (2017). Study of ceramic membrane from naturally occurring-kaolin clays for microfiltration applications. Periodica Polytechnica Chemical Engineering, 61(3), 206-215. doi:10.3311/PPch.9679

Bruno, G., & Kachanov, M. (2016). Microstructure–Property connections for porous ceramics: The possibilities offered by micromechanics. Journal of the American Ceramic Society, 99(12), 3829-3852. doi:10.1111/jace.14624

BURKE, J. E. (1957). Role of grain boundaries in sintering. Journal of the American Ceramic Society, 40(3), 80-85. doi:10.1111/j.1151-2916.1957.tb12580.x

Cormier, L., Dargaud, O., Calas, G., Jousseaume, C., Papin, S., Trcera, N., & Cognigni, A. (2015). Zr environment and nucleation role in aluminosilicate glasses. Materials Chemistry and Physics, 152, 41-47. doi:10.1016/j.matchemphys.2014.12.008

Darestani, M., Haigh, V., Couperthwaite, S. J., Millar, G. J., & Nghiem, L. D. (2017). Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. Journal of Environmental Chemical Engineering, 5(2), 1349-1359. doi:10.1016/j.jece.2017.02.016

Drioli, E., & Giorno, L. (2010). Comprehensive membrane science and engineering. Comprehensive membrane science and engineering (pp. 1-1352) Retrieved from www.scopus.com

Emani, S., Uppaluri, R., & Purkait, M. K. (2014). Cross flow microfiltration of oil-water emulsions using kaolin based low cost ceramic membranes. Desalination, 341(1), 61-71. doi:10.1016/j.desal.2014.02.030

Emani, S., Uppaluri, R., & Purkait, M. K. (2014). Microfiltration of oil-water emulsions using low cost ceramic membranes prepared with the uniaxial dry compaction method. Ceramics International, 40(1 PART A), 1155-1164. doi:10.1016/j.ceramint.2013.06.117

Farhan, O. H., Ibraheem, S. S., & Hussein, S. M. (2020). Study of acidic activation of iraqi kaolin clays and its effect on the surface area properties and cation exchange capacity. Biochemical and Cellular Archives, 20(1), 949-955. doi:10.35124/bca.2020.20.1.949

Ficheux, M., Burov, E., Aquilanti, G., Trcera, N., Montouillout, V., & Cormier, L. (2020). Structural evolution of high zirconia aluminosilicate glasses. Journal of Non-Crystalline Solids, 539 doi:10.1016/j.jnoncrysol.2020.120050

Gerald, B. (2018). A brief review of independent, dependent and one sample t-test. Int.J.Appl.Math.Theor.Phys, 4(2), 50-54. Retrieved from www.scopus.com

Gitis, V., & Rothenberg, G. (2016). Ceramic membranes: New opportunities and practical applications. Ceramic membranes: New opportunities and practical applications (pp. 1-395) doi:10.1002/9783527696550 Retrieved from www.scopus.com

Han, L. -., Xu, Z. -., Cao, Y., Wei, Y. -., & Xu, H. -. (2011). Preparation, characterization and permeation property of Al2O3, Al2O3-SiO2 and Al2O3-kaolin hollow fiber membranes. Journal of Membrane Science, 372(1-2), 154-164. doi:10.1016/j.memsci.2011.01.065

Hedfi, I., Hamdi, N., Srasra, E., & Rodríguez, M. A. (2014). The preparation of micro-porous membrane from a tunisian kaolin. Applied Clay Science, 101, 574-578. doi:10.1016/j.clay.2014.09.021

Hubadillah, S. K., Othman, M. H. D., Harun, Z., Ismail, A. F., Rahman, M. A., Jaafar, J., . . . Mohtor, N. H. (2017). Superhydrophilic, low cost kaolin-based hollow fibre membranes for efficient oily-wastewater separation. Materials Letters, 191, 119-122. doi:10.1016/j.matlet.2016.12.099

Hubadillah, S. K., Othman, M. H. D., Ismail, A. F., Rahman, M. A., & Jaafar, J. (2017). The feasibility of kaolin as main material for low cost porous ceramic hollow fibre membrane prepared using combined phase inversion and sintering technique. Jurnal Teknologi, 79(1-2), 35-39. doi:10.11113/jt.v79.10434

Hubadillah, S. K., Othman, M. H. D., Matsuura, T., Ismail, A. F., Rahman, M. A., Harun, Z., . . . Nomura, M. (2018). Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review. Ceramics International, 44(5), 4538-4560. doi:10.1016/j.ceramint.2017.12.215

Hubadillah, S. K., Othman, M. H. D., Rahman, M. A., Ismail, A. F., & Jaafar, J. (2020). Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater. Arabian Journal of Chemistry, 13(1), 2349-2367. doi:10.1016/j.arabjc.2018.04.018

Ismail, N. J., Othman, M. H. D., Abu Bakar, S., Jaafar, J., & Rahman, M. A. (2020). FABRICATION OF CERAMIC, HOLLOW-FIBER MEMBRANE: THE EFFECT OF BAUXITE CONTENT AND SINTERING TEMPERATURE. Clays and Clay Minerals, 68(4), 309-318. doi:10.1007/s42860-020-00076-8

Jamalludin, M. R., Harun, Z., Othman, M. H. D., Hubadillah, S. K., Yunos, M. Z., & Ismail, A. F. (2018). Morphology and property study of green ceramic hollow fiber membrane derived from waste sugarcane bagasse ash (WSBA). Ceramics International, 44(15), 18450-18461. doi:10.1016/j.ceramint.2018.07.063

Jedidi, I., Khemakhem, S., Larbot, A., & Ben Amar, R. (2009). Elaboration and characterisation of fly ash based mineral supports for microfiltration and ultrafiltration membranes. Ceramics International, 35(7), 2747-2753. doi:10.1016/j.ceramint.2009.03.021

Kim, T. K. (2017). Understanding one-way anova using conceptual figures. Korean Journal of Anesthesiology, 70(1), 22-26. doi:10.4097/kjae.2017.70.1.22

Kingsbury, B. F. K., & Li, K. (2009). A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science, 328(1-2), 134-140. doi:10.1016/j.memsci.2008.11.050

Kingsbury, B. F. K., Wu, Z., & Li, K. (2010). A morphological study of ceramic hollow fibre membranes: A perspective on multifunctional catalytic membrane reactors. Catalysis Today, 156(3-4), 306-315. doi:10.1016/j.cattod.2010.02.039

Koltsov, I., Smalc-Koziorowska, J., Prześniak-Welenc, M., Małysa, M., Kimmel, G., McGlynn, J., . . . Stelmakh, S. (2018). Mechanism of reduced sintering temperature of Al2O3-ZrO2 nanocomposites obtained by microwave hydrothermal synthesis. Materials, 11(5) doi:10.3390/ma11050829

Lee, S. W., & Condrate Sr., R. A. (1988). The infrared and raman spectra of ZrO2-SiO2 glasses prepared by a sol-gel process. Journal of Materials Science, 23(8), 2951-2959. doi:10.1007/BF00547474

Li, L., Chen, M., Dong, Y., Dong, X., Cerneaux, S., Hampshire, S., . . . Liu, J. (2016). A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method. Journal of the European Ceramic Society, 36(8), 2057-2066. doi:10.1016/j.jeurceramsoc.2016.02.020

Liu, H., & Wang, J. (2016). Separation of ammonia from radioactive wastewater by hydrophobic membrane contactor. Progress in Nuclear Energy, 86, 97-102. doi:10.1016/j.pnucene.2015.10.011

Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2015). Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Advances, 5(57), 46348-46358. doi:10.1039/c5ra04169d

Mavrevski, R., Traykov, M., Trenchev, I., & Trencheva, M. (2018). Approaches to modeling of biological experimental data with graphpad prism software. WSEAS Transactions on Systems and Control, 13(1), 242-247. Retrieved from www.scopus.com

Mohtor, N. H., Othman, M. H. D., Bakar, S. A., Kurniawan, T. A., Dzinun, H., Norddin, M. N. A. M., & Rajis, Z. (2018). Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5. Chemosphere, 208, 595-605. doi:10.1016/j.chemosphere.2018.05.159

Mohtor, N. H., Othman, M. H. D., Ismail, A. F., Rahman, M. A., Jaafar, J., & Hashim, N. A. (2017). Investigation on the effect of sintering temperature on kaolin hollow fibre membrane for dye filtration. Environmental Science and Pollution Research, 24(19), 15905-15917. doi:10.1007/s11356-017-9341-6

Niibori, Y., Kunita, M., Tochiyama, O., & Chida, T. (2000). Dissolution rates of amorphous silica in highly alkaline solution. Journal of Nuclear Science and Technology, 37(4), 349-357. doi:10.1080/18811248.2000.9714905

Nishiyama, N., Saputra, H., Park, D. -., Egashira, Y., & Ueyama, K. (2003). Zirconium-containing mesoporous silica zr-MCM-48 for alkali resistant filtration membranes. Journal of Membrane Science, 218(1-2), 165-171. doi:10.1016/S0376-7388(03)00169-8

Norddahl, B., Horn, V. G., Larsson, M., du Preez, J. H., & Christensen, K. (2006). A membrane contactor for ammonia stripping, pilot scale experience and modeling. Desalination, 199(1-3), 172-174. doi:10.1016/j.desal.2006.03.037

Paiman, S. H., Rahman, M. A., Othman, M. H. D., Ismail, A. F., Jaafar, J., & Aziz, A. A. (2015). Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique. Ceramics International, 41(10), 12543-12553. doi:10.1016/j.ceramint.2015.06.066

Park, D. -., Saputra, H., Nishiyama, N., Egashira, Y., & Ueyama, K. (2003). Synthesis of zirconium-containing mesoporous silica zr-MCM-48 membranes with high alkaline resistance for nanofiltration doi:10.1016/S0167-2991(03)80391-9 Retrieved from www.scopus.com

Park, D. -., Saputra, H., Nishiyama, N., Egashira, Y., & Ueyama, K. (2003). Synthesis of zirconium-containing mesoporous silica zr-MCM-48 membranes with high alkaline resistance for nanofiltration doi:10.1016/S0167-2991(03)80391-9 Retrieved from www.scopus.com

Puthai, W., Kanezashi, M., Nagasawa, H., Wakamura, K., Ohnishi, H., & Tsuru, T. (2016). Effect of firing temperature on the water permeability of SiO2-ZrO2 membranes for nanofiltration. Journal of Membrane Science, 497, 348-356. doi:10.1016/j.memsci.2015.09.040

Rauta, P. R., Manivasakan, P., Rajendran, V., Sahu, B. B., Panda, B. K., & Mohapatra, P. (2012). Phase transformation of ZrO 2 nanoparticles produced from zircon. Phase Transitions, 85(1-2), 13-26. doi:10.1080/01411594.2011.619698

Rodič, P., Iskra, J., & Milošev, I. (2014). A hybrid organic-inorganic sol-gel coating for protecting aluminium alloy 7075-T6 against corrosion in harrison's solution. Journal of Sol-Gel Science and Technology, 70(1), 90-103. doi:10.1007/s10971-014-3278-8

Sancho, I., Licon, E., Valderrama, C., de Arespacochaga, N., López-Palau, S., & Cortina, J. L. (2017). Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors. Science of the Total Environment, 584-585, 244-251. doi:10.1016/j.scitotenv.2017.01.123

Sobhani, M., Rezaie, H. R., & Naghizadeh, R. (2008). Sol-gel synthesis of aluminum titanate (Al2TiO5) nano-particles. Journal of Materials Processing Technology, 206(1-3), 282-285. doi:10.1016/j.jmatprotec.2007.12.023

Su, Y., Cui, H., Li, Q., Gao, S., & Shang, J. K. (2013). Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 47(14), 5018-5026. doi:10.1016/j.watres.2013.05.044

Tao, B., Donnelly, J., Oliveira, I., Anthony, R., Wilson, V., & Esteves, S. R. (2017). Enhancement of microbial density and methane production in advanced anaerobic digestion of secondary sewage sludge by continuous removal of ammonia. Bioresource Technology, 232, 380-388. doi:10.1016/j.biortech.2017.02.066

Usman, J., Othman, M. H. D., Ismail, A. F., Rahman, M. A., Jaafar, J., & Abdullahi, T. (2020). Comparative study of malaysian and nigerian kaolin-based ceramic hollow fiber membranes for filtration application. Malaysian Journal of Fundamental and Applied Sciences, 16(2), 182-185. doi:10.11113/mjfas.v16n2.1484

Wang, Y. H., Chen, G., Wang, Z. S., Liu, J. W., & Luo, P. F. (2018). Improvement of microcracks resistance of porous aluminium titanate ceramic membrane support using attapulgite clay as additive. Ceramics International, 44(2), 2077-2084. doi:10.1016/j.ceramint.2017.10.154

Yang, C., Zhang, G., Xu, N., & Shi, J. (1998). Preparation and application in oil-water separation of ZrO2/α-Al2O3 MF membrane. Journal of Membrane Science, 142(2), 235-243. doi:10.1016/S0376-7388(97)00336-0

Yang, X., Fraser, T., Myat, D., Smart, S., Zhang, J., da Costa, J. C. D., . . . Duke, M. (2014). A pervaporation study of ammonia solutions using molecular sieve silica membranes. Membranes, 4(1), 40-54. doi:10.3390/membranes4010040

Zhang, X., Suo, S., Jiang, Y., Chang, Q., Ji, G., & Liu, X. (2016). Microstructure evolution and properties of YSZ hollow fiber microfiltration membranes prepared at different suspension solid content for water treatment. Desalination and Water Treatment, 57(45), 21273-21285. doi:10.1080/19443994.2015.1119751

Zhu, H., Yang, D., Xi, Z., & Zhu, L. (2007). Hydrothermal synthesis and characterization of zirconia nanocrystallites. Journal of the American Ceramic Society, 90(4), 1334-1338. doi:10.1111/j.1551-2916.2007.01494.x


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.