UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The symmetry triangular fuzzy number has been developed to build fuzzy autoregressive models by using various approaches such as low-high data, integer number, measurement error, and standard deviation data. However, most of these approaches are not simulated and compared between ordinary least square and fuzzy optimization in parameter estimation. In this paper, we are interested in implementation of measurement error and standard deviation data in construction symmetry triangular fuzzy numbers. Additionally, both types of triangular fuzzy numbers are deployed to build a fuzzy autoregressive model, especially the second order. The simulation result showed that the fuzzy autoregressive model produced the smaller mean square error and average width if compared with the ordinary autoregressive model. In the implementation, the high accuracy was also achieved by the fuzzy autoregressive model in consumer goods stock prediction. From the simulation and implementation, the proposed fuzzy autoregressive model is a competent approach for upper and lower forecasts. |
References |
Efendi, R., Arbaiy, N., & Deris, M. M. (2018). A new procedure in stock market forecasting based on fuzzy random auto-regression time series model. Information Sciences, 441, 113-132. doi:10.1016/j.ins.2018.02.016 Efendi, R., Arbaiy, N., & Deris, M. M. (0000). Estimation of confidenceinterval for yearly electricity load consumption based on fuzzy random autor-regression. Advances Intel.Syst.Compt.(CIIS), 1(2017), 61-68. Retrieved from www.scopus.com Efendi, R., & Deris, M. M. (2017). Prediction of Malaysian–Indonesian oil production and consumption using fuzzy time series model. Adv.Data Sci.Adapt.Anal., 9, 1750001. Retrieved from www.scopus.com Efendi, R., Deris, M. M., & Ismail, Z. (2016). Implementation of fuzzy time series in forecasting of the non-stationary data. International Journal of Computational Intelligence and Applications, 15(2) doi:10.1142/S1469026816500097 Efendi, R., Ismail, Z., & Deris, M. M. (2015). A new linguistic out-sample approach of fuzzy time series for daily forecasting of malaysian electricity load demand. Applied Soft Computing Journal, 28, 422-430. doi:10.1016/j.asoc.2014.11.043 Efendi, R., Samsudin, N. A., Arbaiy, N., & Deris, M. M. (2017). Fuzzy random auto-regression time series model in enrollment university forecasting. Paper presented at the 5th International Symposium on Computational and Business Intelligence, ISCBI 2017, 61-64. doi:10.1109/ISCBI.2017.8053545 Retrieved from www.scopus.com Efendi, R., Samsudin, N. A., Arbaiy, N., & Deris, M. M. (2017). Maximum-minimum temperature prediction using fuzzy random auto-regression time series model. Paper presented at the 5th International Symposium on Computational and Business Intelligence, ISCBI 2017, 57-60. doi:10.1109/ISCBI.2017.8053544 Retrieved from www.scopus.com Hanke, J. E., & Reitsch, A. G. (2005). Business Forecasting, Retrieved from www.scopus.com Lah, M. S. C., Arbaiy, N., & Efendi, R. (2019). Stock market forecasting model based on AR(1) with adjusted triangular fuzzy number using standard deviation approach for ASEAN countries doi:10.1007/978-981-13-6031-2_22 Retrieved from www.scopus.com Michael Voskoglou, G. (2015). An application of triangular fuzzy numbers to learning assessment. Journal of Physical Science, 20, 63-79. Retrieved from www.scopus.com Rahman, H. M., Arbaiy, N., Efendi, R., & Wen, C. C. (2019). Forecasting ASEAN countries exchange rates using auto regression model based on triangular fuzzy number. Indonesian Journal of Electrical Engineering and Computer Science, 14(3), 1525-1532. doi:10.11591/ijeecs.v14.i3.pp1525-1532 Shao, L., Tsai, Y. -., Watada, J., & Wang, S. (2012). Building fuzzy random auto-regression model and its application. Intel.Decision Tech.(SIST), 14, 24-30. Retrieved from www.scopus.com Song, Q., & Chissom, B. S. (1993). Forecasting enrollments with fuzzy time series - part I. Fuzzy Sets and Systems, 54(1), 1-9. doi:10.1016/0165-0114(93)90355-L Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series - part II. Fuzzy Sets and Systems, 62(1), 1-8. doi:10.1016/0165-0114(94)90067-1 Watada, J., Wang, S., & Pedrycz, W. (2009). Building confidence-interval-based fuzzy random regression models. IEEE Transactions on Fuzzy Systems, 17(6), 1273-1283. doi:10.1109/TFUZZ.2009.2028331 Yolcu, U., Egrioglu, E., Uslu, V. R., Basaran, M. A., & Aladag, C. H. (2009). A new approach for determining the length of intervals for fuzzy time series. Applied Soft Computing Journal, 9(2), 647-651. doi:10.1016/j.asoc.2008.09.002 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |