UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Image Processing was a form of processing of input data signals in the form of images. This input image was transformed into another image with certain techniques. The techniques used in image processing were intensity adjustment, histogram equalization, thresholding, motion blur, canny and median filtering. Image processing could be used to do tracking. This tracking was a job to follow the movement of the object caught on the camera. Tracking using image processing could be utilized in various fields. In this study, the DC motor control system was discussed by utilizing image processing to detect hexagon shaped objects. In addition to detecting the shape that was detected, this image processing was also to detect color. The color of the detected object was orange. This motor speed followed the object's motion horizontally. So, if the object was shifted to the right, the system will rotate slowly, whereas if it was moved to the left, the system will rotate quickly. This motor control used a PG45 motor, webcam, and personal computer. The success of reading the location of the area and providing PWM output on the motor achieved almost match between simulation and experiment. |
References |
Amiri, P., & Bagheri, M. (2013). Speed control of DC motor by programmable logic control with high accuracy. Universal Journal of Control and Automation, 1(4), 91-97. Retrieved from www.scopus.com Andi, A., Heru, S., Yingzhong, T., & Chenwie, D. (2019). Improving Wall-Following Robot Performance using PID-PSO Controller Jurnal Teknologi, 81, 119-126. Retrieved from www.scopus.com Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., & Bouzouia, B. (2017). Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robotics and Autonomous Systems, 89, 95-109. doi:10.1016/j.robot.2016.12.008 Basjaruddin, N. C., Kuspriyanto, K., Saefudin, D., & Putra, G. (2016). Sistem penghindar tabrakan frontal berbasis logika fuzzy. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI), 5, 228-232. Retrieved from www.scopus.com Budiharto, W. (2015). Intelligent surveillance robot with obstacle avoidance capabilities using neural network. Computational Intelligence and Neuroscience, 2015 doi:10.1155/2015/745823 Castillo, O., Melin, P., Pedrycz, W., & Kacprzyk, J. (2014). Recent advances on hybrid approaches for designing intelligent systems doi:10.1007/978-3-319-05170-3 Retrieved from www.scopus.com Febri, S., & Fatchul, A. (2017). Developing Artificial Neural Network Based on Visual Studio for Dance Assessment Jurnal Pendidikan Teknologi Dan Kejuruan(JPTK), 23, 4. Retrieved from www.scopus.com García-Luna, F., & Morales-Díaz, A. (2016). Towards an artificial vision-robotic system for tomato identification. Paper presented at the IFAC-PapersOnLine, , 49(16) 365-370. doi:10.1016/j.ifacol.2016.10.067 Retrieved from www.scopus.com Hernández, D. C., Kurnianggoro, L., Filonenko, A., & Jo, K. H. (2016). Real-time lane region detection using a combination of geometrical and image features. Sensors (Switzerland), 16(11) doi:10.3390/s16111935 Herrero, H., Moughlbay, A. A., Outon, J. L., Salle, D., & Lopez de Ipina, K. (2017). Skill Based Robot Programming: Assembly, Vision and Workspace Monitoring Skill Interaction Neurocomputing, Retrieved from www.scopus.com Khairudin, M., Chen, G. D., Wu, M. C., Asnawi, R., & Nurkhamid. (2019). Control of a movable robot head using vision-based object tracking. International Journal of Electrical and Computer Engineering, 9(4), 2503-2512. doi:10.11591/ijece.v9i4.pp2503-2512 Khairudin, M., Riyanto, S., & Mohammed, Z. (2018). Development of fuzzy logic control for indoor lighting using LEDs group. Telkomnika (Telecommunication Computing Electronics and Control), 16(3), 1165-1173. doi:10.12928/TELKOMNIKA.v16i3.8048 Masmoudi, M. S., Krichen, N., Masmoudi, M., & Derbel, N. (2016). Fuzzy logic controllers design for omnidirectional mobile robot navigation. Applied Soft Computing Journal, 49, 901-919. doi:10.1016/j.asoc.2016.08.057 Mengistu, A. D., & Alemayehu, D. M. (2018). Soil characterization and classification: A hybrid approach of computer vision and sensor network. International Journal of Electrical and Computer Engineering, 8(2), 989-995. doi:10.11591/ijece.v8i2.pp989-995 Rosolia, U., De Bruyne, S., & Alleyne, A. G. (2017). Autonomous vehicle control: A nonconvex approach for obstacle avoidance. IEEE Transactions on Control Systems Technology, 25(2), 469-484. doi:10.1109/TCST.2016.2569468 Shi, Q., Li, C., Wang, C., Luo, H., Huang, Q., & Fukuda, T. (2017). Design and implementation of an omnidirectional vision system for robot perception. Mechatronics, 41, 58-66. doi:10.1016/j.mechatronics.2016.11.005 Walid, E., Abdelfetteh, L., & Mounir, S. (2016). Obstacle avoidance with regard to a mobile robot's case. International Journal of Computer Science and Information Security (IJCSIS), 14, 212-219. Retrieved from www.scopus.com Xu, Y., Fang, G., Lv, N., Chen, S., & Jia Zou, J. (2015). Computer vision technology for seam tracking in robotic GTAW and GMAW. Robotics and Computer-Integrated Manufacturing, 32, 25-36. doi:10.1016/j.rcim.2014.09.002 Yoshio, R., Kenia, P., Ulises, O., Carlos, S., Enrique, B., Oscar, M., Roberto, S. (2018). Fuzzy logic augmentation of neural and optimization algorithms: Theoretical aspects and real applications. Studies in Computational Intelligence, 749, 223-240. Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |