UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :QC Physics
ISSN :1369-8001
Main Author :Afiq Radzwan
Title :G0W0 plus BSE calculations of quasiparticle band structure and optical properties of nitrogen-doped antimony trisulfide for near infrared optoelectronic and solar cells application
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Materials Science in Semiconductor Processing
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Theoretical calculations of structural, electronic, excitonic and optical properties of N-doped Sb2S3 are studied using highly accurate first-principles approach within many-body perturbation theory (MBPT) formalism. The calculated structural parameters of undoped Sb2S3 within Wu-Cohen's generalized gradient approximation (WC-GGA) are reasonably close to those obtained in experimental measurement. Many-body perturbation theory (MBPT) based on the G0W0 approximation is used for the quasiparticle (QP) band structure. The bandgap value of 1.70 eV for the undoped Sb2S3 crystal within G0W0 approximation is consistent with the experimental value of 1.70?1.80 eV. When one atom of N is introduced into Sb2S3 at Sb site, the doping effects modified the band gap from 1.70 to 1.17 eV. Also, by introducing one atom of N to S site, the band gap value reduced to 0.96 eV. Our findings confirmed that non-metal doping narrow the energy gap of semiconductor materials. The optical properties of pure and N-doped Sb2S3 are computed using G0W0 plus Bethe-Salpeter Equation (BSE) which include both electron-electron (e-e) and electron-hole (e-h) interactions. The optical gap for Sb16S24, Sb15N1S24 and Sb16S23N1 were found to be 1.54, 0.97 and 0.82 eV, respectively. The narrowing effects and strong optical absorption of N-doped Sb2S3 suggest that the investigated material is suitable for solar cells and near infrared optoelectronic applications.

References

Adler, S. L. (1962). Quantum theory of the dielectric constant in real solids. Physical Review, 126(2), 413-420. doi:10.1103/PhysRev.126.413

Ahmed, T., O Vorakiat, C. L., Salim, T., Lam, Y. M., Chia, E. E. M., & Zhu, J. -. (2020). EPL, 108 Retrieved from www.scopus.com

Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293(5528), 269-271. doi:10.1126/science.1061051

Asif Javed, H. M., Que, W., Ahmad, M. R., Ali, K., Irfan Ahmad, M., Ul Haq, A., & Sharma, S. K. (2020). Perspective of nanomaterials in the performance of solar cells. Solar cells: From materials to device technology (pp. 25-54) doi:10.1007/978-3-030-36354-3_2 Retrieved from www.scopus.com

Assali, A., Bouslama, M., Chaabane, L., Mokadem, A., & Saidi, F. (2017). Structural and opto-electronic properties of InP1−xBix bismide alloys for MID−infrared optical devices: A DFT + TB-mBJ study. Physica B: Condensed Matter, 526, 71-79. doi:10.1016/j.physb.2017.09.058

Barhoumi, M., & Said, M. (2020). Correction of band-gap energy and dielectric function of BiOX bulk with GW and BSE. Optik, 216 doi:10.1016/j.ijleo.2020.164631

Bayliss, P., & Nowacki, W. (1972). Refinement of the crystal structure of stibnite, Sb2S31. Zeitschrift Fur Kristallographie - New Crystal Structures, 135(3-4), 308-315. doi:10.1524/zkri.1972.135.3-4.308

Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/PhysRevA.38.3098

Ben Nasr, T., Maghraoui-Meherzi, H., Ben Abdallah, H., & Bennaceur, R. (2011). Electronic structure and optical properties of Sb2S3 crystal. Physica B: Condensed Matter, 406(2), 287-292. doi:10.1016/j.physb.2010.10.070

Ben Nasr, T., Maghraoui-Meherzi, H., & Kamoun-Turki, N. (2016). First-principles study of electronic, thermoelectric and thermal properties of Sb2S3. Journal of Alloys and Compounds, 663, 123-127. doi:10.1016/j.jallcom.2015.12.093

Black, J., Conwell, E. M., Seigle, L., & Spencer, C. W. (1957). Electrical and optical properties of some M2v-bN3vi-b semiconductors. Journal of Physics and Chemistry of Solids, 2(3), 240-251. doi:10.1016/0022-3697(57)90090-2

Bruton, T. M. (2002). General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 72(1-4), 3-10. doi:10.1016/S0927-0248(01)00145-3

Bube, R. H. (1960). Photoelectronic analysis of high resistivity crystals: (A) GaAs, (b) Sb2S3. Journal of Applied Physics, 31(2), 315-322. doi:10.1063/1.1735564

Cárdenas, E., Arato, A., Perez-Tijerina, E., Das Roy, T. K., Alan Castillo, G., & Krishnan, B. (2009). Carbon-doped Sb2S3 thin films: Structural, optical and electrical properties. Solar Energy Materials and Solar Cells, 93(1), 33-36. doi:10.1016/j.solmat.2008.02.026

Caruso, F., Filip, M. R., & Giustino, F. (2015). Excitons in one-dimensional van der waals materials: Sb2 S3 nanoribbons. Physical Review B - Condensed Matter and Materials Physics, 92(12) doi:10.1103/PhysRevB.92.125134

Cerdán-Pasarán, A., López-Luke, T., Mathew, X., & Mathews, N. R. (2019). Effect of cobalt doping on the device properties of Sb2S3-sensitized TiO2 solar cells. Solar Energy, 183, 697-703. doi:10.1016/j.solener.2019.03.077

Chen, G. -., Dneg, B., Cai, G. -., Zhang, T. -., Dong, W. -., Zhang, W. -., & Xu, A. -. (2008). The fractal splitting growth of Sb2S3 and sb 2Se3 hierarchical nanostructures. Journal of Physical Chemistry C, 112(3), 672-679. doi:10.1021/jp076883z

Duan, T., Liao, C., Chen, T., Yu, N., Liu, Y., Yin, H., . . . Zhu, M. -. (2015). Single crystalline nitrogen-doped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates. Nano Energy, 15, 293-302. doi:10.1016/j.nanoen.2015.05.002

Escudero, D., Duchemin, I., Blase, X., & Jacquemin, D. (2017). Modeling the photochrome-TiO2 interface with bethe-salpeter and time-dependent density functional theory methods. Journal of Physical Chemistry Letters, 8(5), 936-940. doi:10.1021/acs.jpclett.7b00015

Ezema, F. I., Ekwealor, A. B. C., Asogwa, P. U., Ugwuoke, P. E., Chigbo, C., & Osuji, R. U. (2007). Optical properties and structural characterizations of Sb2S 3 thin films deposited by chemical bath deposition technique. Turkish Journal of Physics, 31(4), 205-210. Retrieved from www.scopus.com

Fabian, J. (2014). Band structure and spin-orbit coupling engineering in transition-metal dichalcogenides. Annalen Der Physik, 526(9-10), A89-A91. doi:10.1002/andp.201400811

Filip, M. R., Patrick, C. E., & Giustino, F. (2013). GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite. Physical Review B - Condensed Matter and Materials Physics, 87(20) doi:10.1103/PhysRevB.87.205125

Fujita, T., Takiyama, K., Oda, T., Kurita, K., & Kurita, K. (1987). The fundamental absorption edge and electronic structure in Sb2S3. Journal of the Physical Society of Japan, 56(10), 3734-3739. doi:10.1143/JPSJ.56.3734

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., . . . Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39) doi:10.1088/0953-8984/21/39/395502

Godby, R. W., & Needs, R. J. (1989). Metal-insulator transition in kohn-sham theory and quasiparticle theory. Physical Review Letters, 62(10), 1169-1172. doi:10.1103/PhysRevLett.62.1169

Godby, R. W., & Needs, R. J. (1989). Metal-insulator transition in kohn-sham theory and quasiparticle theory. Physical Review Letters, 62(10), 1169-1172. doi:10.1103/PhysRevLett.62.1169

Gong, S., & Liu, B. -. (2012). Electronic structures and optical properties of TiO 2: Improved density-functional-theory investigation. Chinese Physics B, 21(5) doi:10.1088/1674-1056/21/5/057104

Grigas, J., Talik, E., & Lazauskas, V. (2002). X-RAY photoelectron spectroscopy of Sb2S3 crystals. Phase Transitions, 75(3), 323-337. doi:10.1080/01411590290020448

Hybertsen, M. S., & Louie, S. G. (1984). Non-local density functional theory for the electronic and structural properties of semiconductors. Solid State Communications, 51(7), 451-454. doi:10.1016/0038-1098(84)91011-1

Ibáñez, J., Sans, J. A., Popescu, C., López-Vidrier, J., Elvira-Betanzos, J. J., Cuenca-Gotor, V. P., . . . Muñoz, A. (2016). Structural, vibrational, and electronic study of Sb2S3 at high pressure. Journal of Physical Chemistry C, 120(19), 10547-10558. doi:10.1021/acs.jpcc.6b01276

Ito, S., Tsujimoto, K., Nguyen, D. -., Manabe, K., & Nishino, H. (2013). Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. International Journal of Hydrogen Energy, 38(36), 16749-16754. doi:10.1016/j.ijhydene.2013.02.069

Jiang, C., Tang, R., Wang, X., Ju, H., Chen, G., & Chen, T. (2019). Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Solar RRL, 3(1) doi:10.1002/solr.201800272

Kang, W., & Hybertsen, M. S. (2010). Quasiparticle and optical properties of rutile and anatase TiO2. Physical Review B - Condensed Matter and Materials Physics, 82(8) doi:10.1103/PhysRevB.82.085203

Koc, H., Mamedov, A. M., Deligoz, E., & Ozisik, H. (2012). First principles prediction of the elastic, electronic, and optical properties of sb 2S 3 and sb 2Se 3 compounds. Solid State Sciences, 14(8), 1211-1220. doi:10.1016/j.solidstatesciences.2012.06.003

Kondrotas, R., Chen, C., & Tang, J. (2018). Sb2S3 solar cells. Joule, 2(5), 857-878. doi:10.1016/j.joule.2018.04.003

Körbel, S., Kammerlander, D., Sarmiento-Pérez, R., Attaccalite, C., Marques, M. A. L., & Botti, S. (2015). Optical properties of cu-chalcogenide photovoltaic absorbers from self-consistent GW and the bethe-salpeter equation. Physical Review B - Condensed Matter and Materials Physics, 91(7) doi:10.1103/PhysRevB.91.075134

Kosek, F., Tulka, J., & Štourač, L. (1978). Optical, photoelectric and electric properties of single-crystalline Sb2Se3. Czechoslovak Journal of Physics, 28(3), 325-330. doi:10.1007/BF01597220

Kyono, A., & Kimata, M. (2004). Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (sb,bi)2S 3. American Mineralogist, 89(7), 932-940. doi:10.2138/am-2004-0702

Lawal, A., Shaari, A., Ahmed, R., & Jarkoni, N. (2017). First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector. Physica B: Condensed Matter, 520, 69-75. doi:10.1016/j.physb.2017.05.048

Lawal, A., Shaari, A., Ahmed, R., & Jarkoni, N. (2017). Sb2Te3 crystal a potential absorber material for broadband photodetector: A first-principles study. Results in Physics, 7, 2302-2310. doi:10.1016/j.rinp.2017.06.040

Lawal, A., Shaari, A., Ahmed, R., & Taura, L. S. (2018). Investigation of excitonic states effects on optoelectronic properties of Sb2Se3 crystal for broadband photo-detector by highly accurate first-principles approach. Current Applied Physics, 18(5), 567-575. doi:10.1016/j.cap.2018.02.008

Liu, Y., Eddie Chua, K. T., Sum, T. C., & Gan, C. K. (2014). First-principles study of the lattice dynamics of Sb2S 3. Physical Chemistry Chemical Physics, 16(1), 345-350. doi:10.1039/c3cp53879f

Marini, A., Hogan, C., Grüning, M., & Varsano, D. (2009). Yambo: An ab initio tool for excited state calculations. Computer Physics Communications, 180(8), 1392-1403. doi:10.1016/j.cpc.2009.02.003

Marsili, M., Mosconi, E., De Angelis, F., & Umari, P. (2016). Large scale GW-BSE calculations with N3 scaling: Excitonic effects in dye sensitised solar cells. ArXiv Prepr.arXiv, 1603 Retrieved from www.scopus.com

Monkhorst, H. J., & Pack, J. D. (1976). Special points for brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/PhysRevB.13.5188

Moon, S. -., Itzhaik, Y., Yum, J. -., Zakeeruddin, S. M., Hodes, G., & Grätzel, M. (2010). Sb2S3-based mesoscopic solar cell using an organic hole conductor. Journal of Physical Chemistry Letters, 1(10), 1524-1527. doi:10.1021/jz100308q

Mushtaq, S., Ismail, B., Raheel, M., & Zeb, A. (2016). Nickel antimony sulphide thin films for solar cell application: Study of optical constants. Nat.Sci., 8(2), 33-40. Retrieved from www.scopus.com

Onida, G., Reining, L., & Rubio, A. (2002). Electronic excitations: Density-functional versus many-body green's-function approaches. Reviews of Modern Physics, 74(2), 601-659. doi:10.1103/RevModPhys.74.601

Perdew, J. P., & Burke, K. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B - Condensed Matter and Materials Physics, 54(23), 16533-16539. doi:10.1103/PhysRevB.54.16533

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/PhysRevLett.77.3865

Pitchaiya, S., Natarajan, M., Santhanam, A., Asokan, V., Yuvapragasam, A., Madurai Ramakrishnan, V. Velauthapillai, D. (2020). A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arabian Journal of Chemistry, 13(1), 2526-2557. doi:10.1016/j.arabjc.2018.06.006

Qin, S., Lei, W., Liu, D., & Chen, Y. (2014). In-situ and tunable nitrogen-doping of MoS2 nanosheets. Scientific Reports, 4 doi:10.1038/srep07582

Radzwan, A., Ahmed, R., Shaari, A., & Lawal, A. (2019). Ab initio calculations of antimony sulphide nanowire. Physica B: Condensed Matter, 557, 17-22. doi:10.1016/j.physb.2019.01.005

Radzwan, A., Ahmed, R., Shaari, A., Lawal, A., & Ng, Y. X. (2017). First-principles calculations of antimony sulphide Sb2S3. Malays.J.Fundam.Appl.Sci., 13(3), 18-21. Retrieved from www.scopus.com

Radzwan, A., Ahmed, R., Shaari, A., Ng, Y. X., & Lawal, A. (2018). First-principles calculations of the stibnite at the level of modified Becke–Johnson exchange potential. Chinese Journal of Physics, 56(3), 1331-1344. doi:10.1016/j.cjph.2018.03.005

Radzwan, A., Lawal, A., Shaari, A., Chiromawa, I. M., Ahams, S. T., & Ahmed, R. (2020). First-principles calculations of structural, electronic, and optical properties for ni-doped Sb2S3. Computational Condensed Matter, 24 doi:10.1016/j.cocom.2020.e00477

Reisner, D. E., & Pradeep, T. (0000). Retrieved from www.scopus.com

Rohlfing, M., & Louie, S. G. (2000). Electron-hole excitations and optical spectra from first principles. Physical Review B - Condensed Matter and Materials Physics, 62(8), 4927-4944. doi:10.1103/PhysRevB.62.4927

Sajid-ur-Rehman, Butt, F. K., Li, C., Ul Haq, B., Tariq, Z., & Aleem, F. (2018). First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices. Frontiers of Physics, 13(3) doi:10.1007/s11467-018-0790-2

Salem, A. M., & Soliman Selim, M. (2001). Structure and optical properties of chemically deposited Sb2S3 thin films. Journal of Physics D: Applied Physics, 34(1), 12-17. doi:10.1088/0022-3727/34/1/303

Sangalli, D., Ferretti, A., Miranda, H., Attaccalite, C., Marri, I., Cannuccia, E., Marini, A. (2019). Many-body perturbation theory calculations using the yambo code. Journal of Physics Condensed Matter, 31(32) doi:10.1088/1361-648X/ab15d0

Shahrokhi, M., & Leonard, C. (2017). Tuning the band gap and optical spectra of silicon-doped graphene: Many-body effects and excitonic states. Journal of Alloys and Compounds, 693, 1185-1196. doi:10.1016/j.jallcom.2016.10.101

Sharma, V., & Chandel, S. S. (2016). A novel study for determining early life degradation of multi-crystalline-silicon photovoltaic modules observed in western himalayan indian climatic conditions. Solar Energy, 134, 32-44. doi:10.1016/j.solener.2016.04.023

Shishkin, M., & Kresse, G. (2007). Self-consistent GW calculations for semiconductors and insulators. Physical Review B - Condensed Matter and Materials Physics, 75(23) doi:10.1103/PhysRevB.75.235102

Shutov, S. D., Sobolev, V. V., Popov, Y. V., & Shestatskii, S. N. (1969). Polarization effects in the reflectivity spectra of orthorhombic crystals Sb2S3 and Sb2Se3. Physica Status Solidi (b), 31(1), K23-K27. doi:10.1002/pssb.19690310157

Tigau, N. (2007). Influence of thermoannealing on crystallinity and optical properties of Sb2S3 thin films. Crystal Research and Technology, 42(3), 281-285. doi:10.1002/crat.200610813

Usman, T., Murtaza, G., Luo, H., & Mahmood, A. (2017). GGA and GGA + U study of rare earth-based perovskites in cubic phase. Journal of Superconductivity and Novel Magnetism, 30(6), 1389-1396. doi:10.1007/s10948-016-3953-9

Validzic, I. L. J., Mitric, M., Abazovic, N. D., Jokić, B. M., Milosevic, A. S., Popović, Z. S., & Vukajlović, F. R. (2014). Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. Semiconductor Science and Technology, 29(3) doi:10.1088/0268-1242/29/3/035007

Validzic, I. L. J., Mitric, M., Abazovic, N. D., Jokic, B. M., Milosevic, A. S., Popović, Z. S., & Vukajlovic, F. R. (2014). Structural analysis, electronic and optical properties of the synthesized Sb2S3 nanowires with small band gap. Semiconductor Science and Technology, 29(3) doi:10.1088/0268-1242/29/3/035007

Wang, M., He, X., Shen, M., Yang, L., & Shi, Y. (2020). Effect of nitrogen doping on the electronic transport of zigzag MoS2 nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 120 doi:10.1016/j.physe.2020.114039

Wang, S. B., Fang, Y. J., Wang, X., & David) Lou, X. W. (2019). Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew.Chem.Int.Ed., 131, 770-773. Retrieved from www.scopus.com

Wiser, N. (1963). Dielectric constant with local field effects included. Physical Review, 129(1), 62-69. doi:10.1103/PhysRev.129.62

Wooten, F. (0000). Retrieved from www.scopus.com

Zou, X., Ji, L., Ge, J., Sadoway, D. R., Yu, E. T., & Bard, A. J. (2019). Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications. Nature Communications, 10(1) doi:10.1038/s41467-019-13065-w


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.