UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Extensive research has been conducted on e-tourism spanning a wide range of concepts, challenges and concerns discussed in tourism recommender systems (TRS). Smart tourism can be considered a logical progression from e-tourism laid with the extensive adoption of information and communication technologies and connecting the physical and digital worlds by taking advantage of 12 'smart key concepts' such as privacy protection, Internet of Things and augmented reality, among others. Consequently, several disparate types of research have existed in various classes of TRS that have accomplished smart key concepts where others have failed. However, such piecemeal development is insufficient for a pragmatic smart tourism solution. Accordingly, the current study complements the academic literature with a systematic review that covers all main aspects of the e-tourism management system applied to the smart tourism concepts over the last eight years of publication. This study also provides a state-of-the-art e-tourism data management classification taxonomy based on smart concepts and reviews works in different fields against that classification. To this end, we reviewed the ScienceDirect, IEEE Xplore and Web of Science databases. A total of 1240 papers were collected from 2013 to 2020. The retrieved articles were filtered according to the defined inclusion criteria. Finally, 65 articles were selected and classified into two categories. The first category includes smart-based TRS that accounts for 87.70% (n = 57/65) and classified into four approaches: collaborative filtering, content model, context model and hybrid model. The second category includes tourism marketing that accounts for 12.30% (n = 8/65). This multi-field systematic review has exposed new research opportunities, motivations, recommendations and challenges and limitations that need attention for the synergistic smart integration of interdisciplinary studies. The reliability and acceptability of smart-based TRS approach from the implemented 12 smart key concepts show a significant difference. Analysis shows that the content model-based approach has a highly important effect on smart e-tourism, i.e., applying numerous smart key concepts in higher mean (40.2%). Results of several past studies that used a content model-based approach were nearly perceived as smart e-tourism. The smartly achieved key concepts for hybrid and context-based approaches have approximate means of (37.9%) and 36.6%, respectively, thereby confirming results. The results of tourism marketing and collaborative filtering approaches are worse than the previously reported results, achieving means of (33.3%) and (30.3%), respectively. This study is a useful guide for researchers and practitioners in providing avenues and valuable information for future research. This study is also expected to address the ambiguity of e-tourism and smart tourism trends. ? 2020 Elsevier Inc. |
References |
Abbas, A., Zhang, L., & Khan, S. U. (2015). A survey on context-aware recommender systems based on computational intelligence techniques. Computing, 97(7), 667-690. doi:10.1007/s00607-015-0448-7 Abdar, M., Zomorodi-Moghadam, M., Das, R., & Ting, I. -. (2019). Corrigendum to “Performance analysis of classification algorithms on early detection of liver disease” (expert systems with applications (2017) 67 (239–251), (S095741741630464X) (10.1016/j.eswa.2016.08.065)). Expert Systems with Applications, 125, 442-443. doi:10.1016/j.eswa.2019.02.029 Alamoodi, A. H., Garfan, S., Zaidan, B. B., Zaidan, A. A., Shuwandy, M. L., Alaa, M., . . . Alobaidi, O. R. (2020). A systematic review into the assessment of medical apps: Motivations, challenges, recommendations and methodological aspect. Health and Technology, 10(5), 1045-1061. doi:10.1007/s12553-020-00451-4 Alamoodi, A. H., Zaidan, B. B., Zaidan, A. A., Albahri, O. S., Mohammed, K. I., Malik, R. Q., . . . Alaa, M. (2021). Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Systems with Applications, 167 doi:10.1016/j.eswa.2020.114155 Albahri, A. S., Alwan, J. K., Taha, Z. K., Ismail, S. F., Hamid, R. A., Zaidan, A. A., . . . Alsalem, M. A. (2021). IoT-based telemedicine for disease prevention and health promotion: State-of-the-art. Journal of Network and Computer Applications, 173 doi:10.1016/j.jnca.2020.102873 Angeloni, S. (2016). A tourist kit 'made in italy': An 'intelligent' system for implementing new generation destination cards. Tourism Management, 52, 187-209. doi:10.1016/j.tourman.2015.06.011 Angskun, T., & Angskun, J. (2018). A qualitative attraction ranking model for personalized recommendations. Journal of Hospitality and Tourism Technology, 9(1), 2-12. doi:10.1108/JHTT-09-2016-0047 Ardissono, L., Kuflik, T., & Petrelli, D. (2012). Personalization in cultural heritage: The road travelled and the one ahead. User Modeling and User-Adapted Interaction, 22(1-2), 73-99. doi:10.1007/s11257-011-9104-x Balandina, E., Balandin, S., Koucheryavy, Y., & Mouromtsev, D. (2016). Innovative e-tourism services on top of Geo2Tag LBS platform. Paper presented at the Proceedings - 11th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2015, 752-759. doi:10.1109/SITIS.2015.11 Retrieved from www.scopus.com Bennett, N. J., Blythe, J., Tyler, S., & Ban, N. C. (2016). Communities and change in the anthropocene: Understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures. Regional Environmental Change, 16(4), 907-926. doi:10.1007/s10113-015-0839-5 Binucci, C., De Luca, F., Di Giacomo, E., Liotta, G., & Montecchiani, F. (2017). Designing the content analyzer of a travel recommender system. Expert Systems with Applications, 87, 199-208. doi:10.1016/j.eswa.2017.06.028 Bowen, J., & Whalen, E. (2017). Trends that are changing travel and tourism. Worldwide Hospitality and Tourism Themes, 9(6), 592-602. doi:10.1108/WHATT-09-2017-0045 Braunhofer, M., & Ricci, F. (2017). Selective contextual information acquisition in travel recommender systems. Information Technology and Tourism, 17(1), 5-29. doi:10.1007/s40558-017-0075-6 Britton, S. (1991). Tourism, capital, and place: Towards a critical geography of tourism. Environment & Planning D: Society & Space, 9(4), 451-478. doi:10.1068/d090451 Bue, A. L., Wecker, A. J., Kuflik, T., Machì, A., & Stock, O. (2015). Providing personalized cultural heritage information for the smart region - A proposed methodology. Paper presented at the CEUR Workshop Proceedings, , 1388 Retrieved from www.scopus.com Buhalis, D., & Amaranggana, A. (2015). Smart tourism destinations enhancing tourism experience through personalisation of services. Information and Communication Technologies in Tourism 2015, , 377-389. Retrieved from www.scopus.com Burke, R. (2007). Hybrid web recommender systems doi:10.1007/978-3-540-72079-9_12 Retrieved from www.scopus.com Chang, S. E., & Shen, W. -. (2018). Exploring smartphone social networking services for mobile tourism. International Journal of Mobile Communications, 16(1), 63-81. doi:10.1504/IJMC.2018.088273 Colomo-Palacios, R., García-Peñalvo, F. J., Stantchev, V., & Misra, S. (2017). Towards a social and context-aware mobile recommendation system for tourism. Pervasive and Mobile Computing, 38, 505-515. doi:10.1016/j.pmcj.2016.03.001 Demir, Ö. F., & Karaarslan, E. (2018). Augmented reality application for smart tourism: GökovAR. Paper presented at the Proceedings - 2018 6th International Istanbul Smart Grids and Cities Congress and Fair, ICSG 2018, 164-167. doi:10.1109/SGCF.2018.8408965 Retrieved from www.scopus.com Dessi, A., & Atzori, M. (2016). A machine-learning approach to ranking RDF properties. Future Generation Computer Systems, 54, 366-377. doi:10.1016/j.future.2015.04.018 Dhaware, M., & Vanwari, P. (2020). A tourism and travel recommendation system based on user-location vector doi:10.1007/978-981-15-1420-3_152 Retrieved from www.scopus.com Ernest, E. O., Henry, C., Omorojeb, C. G., & Omotunde Ayokunie, A. (2016). Intelligent tourism management system. The American Scientific Research Journal for Engineering, Technology, and Sciences, 18(1), 304-315. Retrieved from www.scopus.com Garcia, L. M., Aciar, S., Mendoza, R., & Puello, J. J. (2018). Smart tourism platform based on microservice architecture and recommender services doi:10.1007/978-3-319-97163-6_14 Retrieved from www.scopus.com Godinho, P., Silva, M., & Moutinho, L. (2015). Tourism site location based on a genetic algorithm. Tourism Analysis, 20(2), 159-172. doi:10.3727/108354215X14265319207317 Gotham, K. F. (2018). Tourism and culture. Routledge handbook of cultural sociology: Second edition (pp. 592-599) doi:10.4324/9781315267784-63 Retrieved from www.scopus.com Gretzel, U. (2011). Intelligent systems in tourism. A social science perspective. Annals of Tourism Research, 38(3), 757-779. doi:10.1016/j.annals.2011.04.014 Gretzel, U., Reino, S., Kopera, S., & Koo, C. (2015). Smart tourism challenges. Journal of Tourism, 16(1), 41-47. Retrieved from www.scopus.com Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: Foundations and developments. Electronic Markets, 25(3), 179-188. doi:10.1007/s12525-015-0196-8 Gruber, T. (2008). Collective knowledge systems: Where the social web meets the semantic web. Web Semantics, 6(1), 4-13. doi:10.1016/j.websem.2007.11.011 Han, J., & Lee, H. (2015). Adaptive landmark recommendations for travel planning: Personalizing and clustering landmarks using geo-tagged social media. Pervasive and Mobile Computing, 18, 4-17. doi:10.1016/j.pmcj.2014.08.002 Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261-273. doi:10.1016/j.eij.2015.06.005 Jorro-Aragoneses, J. L., Diaz Agudo, M. B., & Recio Garcia, J. A. (2018). Madrid live: A context-aware recomendar system of leisure plans. Paper presented at the Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, , 2017-November 796-801. doi:10.1109/ICTAI.2017.00125 Retrieved from www.scopus.com Karabadji, N. E. I., Beldjoudi, S., Seridi, H., Aridhi, S., & Dhifli, W. (2018). Improving memory-based user collaborative filtering with evolutionary multi-objective optimization. Expert Systems with Applications, 98, 153-165. doi:10.1016/j.eswa.2018.01.015 Kesorn, K., Juraphanthong, W., & Salaiwarakul, A. (2017). Personalized attraction recommendation system for tourists through check-in data. IEEE Access, 5, 26703-26721. doi:10.1109/ACCESS.2017.2778293 Komninos, A., Besharat, J., Ferreira, D., Garofalakis, J., & Kostakos, V. (2017). Where’s everybody? comparing the use of heatmaps to uncover cities’ tacit social context in smartphones and pervasive displays. Information Technology and Tourism, 17(4), 399-427. doi:10.1007/s40558-017-0092-5 Kontogianni, A., & Alepis, E. (2020). Smart tourism: State of the art and literature review for the last six years. Array, 6 Retrieved from www.scopus.com Kontogianni, A., Kabassi, K., & Alepis, E. (2018). Designing a smart tourism mobile application: User modelling through social networks’ user implicit data doi:10.1007/978-3-030-01159-8_14 Retrieved from www.scopus.com Kotiloglu, S., Lappas, T., Pelechrinis, K., & Repoussis, P. P. (2017). Personalized multi-period tour recommendations. Tourism Management, 62, 76-88. doi:10.1016/j.tourman.2017.03.005 Kujala, S., Roto, V., Väänänen-Vainio-Mattila, K., Karapanos, E., & Sinnelä, A. (2011). UX curve: A method for evaluating long-term user experience. Interacting with Computers, 23(5), 473-483. doi:10.1016/j.intcom.2011.06.005 Kumar, B., & Sharma, N. (2016). An energy efficient opportunistic routing metric for wireless sensor networks. Indian Journal of Science and Technology, 9(47), 1-5. Retrieved from www.scopus.com Le, Q. T., & Pishva, D. (2016). An innovative tour recommendation system for tourists in japan. Paper presented at the International Conference on Advanced Communication Technology, ICACT, , 2016-March 717-729. doi:10.1109/ICACT.2016.7423607 Retrieved from www.scopus.com Leiper, N., & Leiper, N. (1990). An Interdisciplinary Perspective an Interdisciplinary Perspective, Retrieved from www.scopus.com Li, L., & Yang, S. -. (2017). Exploring the effect of heuristic factors on the popularity of “best places to visit” recommendation in a chinese outbound traveler community. Paper presented at the ACM International Conference Proceeding Series, doi:10.1145/3154943.3154949 Retrieved from www.scopus.com Li, Y., Wang, H., Liu, H., & Chen, B. (2018). A study on content-based video recommendation. Paper presented at the Proceedings - International Conference on Image Processing, ICIP, , 2017-September 4581-4585. doi:10.1109/ICIP.2017.8297150 Retrieved from www.scopus.com Liberato, P., Liberato, D., Abreu, A., Alén-González, E., & Rocha, Á. (2018). Generation Y: The competitiveness of the tourism sector based on digital technology doi:10.1007/978-3-319-74980-8_21 Retrieved from www.scopus.com Logesh, R., Subramaniyaswamy, V., Vijayakumar, V., Gao, X. -., & Indragandhi, V. (2018). A hybrid quantum-induced swarm intelligence clustering for the urban trip recommendation in smart city. Future Generation Computer Systems, 83, 653-673. doi:10.1016/j.future.2017.08.060 Miah, S. J., Vu, H. Q., Gammack, J., & McGrath, M. (2017). A big data analytics method for tourist behaviour analysis. Information and Management, 54(6), 771-785. doi:10.1016/j.im.2016.11.011 Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336-341. doi:10.1016/j.ijsu.2010.02.007 Nilashi, M., Bagherifard, K., Rahmani, M., & Rafe, V. (2017). A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques. Computers and Industrial Engineering, 109, 357-368. doi:10.1016/j.cie.2017.05.016 Nilashi, M., Ibrahim, O., & Bagherifard, K. (2018). A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Systems with Applications, 92, 507-520. doi:10.1016/j.eswa.2017.09.058 Nogueira, T. P., Braga, R. B., de Oliveira, C. T., & Martin, H. (2018). FrameSTEP: A framework for annotating semantic trajectories based on episodes. Expert Systems with Applications, 92, 533-545. doi:10.1016/j.eswa.2017.10.004 Oner, S. C., & Oztaysi, B. (2018). An interval type 2 hesitant fuzzy MCDM approach and a fuzzy c means clustering for retailer clustering. Soft Computing, 22(15), 4971-4987. doi:10.1007/s00500-018-3191-0 Ospina, E., Moreno, F., & Uribe, I. A. (2015). Using criteria reconstruction for low-sampling trajectories as a tool for analytics. Paper presented at the Procedia Computer Science, , 51(1) 366-373. doi:10.1016/j.procs.2015.05.256 Retrieved from www.scopus.com Pantano, E., Priporas, C. -., & Stylos, N. (2017). ‘You will like it!’ using open data to predict tourists' response to a tourist attraction. Tourism Management, 60, 430-438. doi:10.1016/j.tourman.2016.12.020 Ranjbar Kermany, N., & Alizadeh, S. H. (2017). A hybrid multi-criteria recommender system using ontology and neuro-fuzzy techniques. Electronic Commerce Research and Applications, 21, 50-64. doi:10.1016/j.elerap.2016.12.005 Ricci, F., Shapira, B., & Rokach, L. (2015). Recommender systems handbook, second edition. Recommender systems handbook, second edition (pp. 1-1003) doi:10.1007/978-1-4899-7637-6 Retrieved from www.scopus.com Rongrong, Y. (2017). A mobile smart tourism and marketing system design for harbin. Paper presented at the Proceedings - 2017 International Conference on Robots and Intelligent System, ICRIS 2017, 12-14. doi:10.1109/ICRIS.2017.11 Retrieved from www.scopus.com Santos, F., Almeida, A., Martins, C., Gonçalves, R., & Martins, J. (2019). Using POI functionality and accessibility levels for delivering personalized tourism recommendations. Computers, Environment and Urban Systems, 77 doi:10.1016/j.compenvurbsys.2017.08.007 Sertkan, M., Neidhardt, J., & Werthner, H. (2020). From pictures to travel characteristics: Deep learning-based profiling of tourists and tourism destinations. Information and Communication Technologies in Tourism 2020, , 142-153. Retrieved from www.scopus.com Sharma, R., Gopalani, D., & Meena, Y. (2017). Collaborative filtering-based recommender system: Approaches and research challenges. Paper presented at the 3rd IEEE International Conference on, doi:10.1109/CIACT.2017.7977363 Retrieved from www.scopus.com Shuwandy, M. L., Zaidan, B. B., Zaidan, A. A., Albahri, A. S., Alamoodi, A. H., Albahri, O. S., & Alazab, M. (2020). mHealth authentication approach based 3D touchscreen and microphone sensors for real-time remote healthcare monitoring system: Comprehensive review, open issues and methodological aspects. Computer Science Review, 38 doi:10.1016/j.cosrev.2020.100300 Smith, S. L. J. (1995). Tourism Analysis: A Handbook, Retrieved from www.scopus.com Subramaniyaswamy, V., Manogaran, G., Logesh, R., Vijayakumar, V., Chilamkurti, N., Malathi, D., & Senthilselvan, N. (2019). An ontology-driven personalized food recommendation in IoT-based healthcare system. Journal of Supercomputing, 75(6), 3184-3216. doi:10.1007/s11227-018-2331-8 Varfolomeyev, A., Korzun, D., Ivanovs, A., Soms, H., & Petrina, O. (2015). Smart space based recommendation service for historical tourism. Paper presented at the Procedia Computer Science, , 77 85-91. doi:10.1016/j.procs.2015.12.363 Retrieved from www.scopus.com Wang, N. (2014). Research on construction of smart tourism perception system and management platform doi:10.4028/www.scientific.net/AMM.687-691.1745 Retrieved from www.scopus.com Wang, X., Li, X. R., Zhen, F., & Zhang, J. (2016). How smart is your tourist attraction?: Measuring tourist preferences of smart tourism attractions via a FCEM-AHP and IPA approach. Tourism Management, 54, 309-320. doi:10.1016/j.tourman.2015.12.003 Want, R., Schilit, B. N., & Jenson, S. (2015). Enabling the internet of things. Computer, 48(1), 28-35. doi:10.1109/MC.2015.12 Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep learning based recommendation system for cold start items. Expert Systems with Applications, 69, 1339-1351. doi:10.1016/j.eswa.2016.09.040 Weitemeyer, J. (2020). Statistica, Retrieved from www.scopus.com Wolf, I. D., Wohlfart, T., Brown, G., & Bartolomé Lasa, A. (2015). The use of public participation GIS (PPGIS) for park visitor management: A case study of mountain biking. Tourism Management, 51, 112-130. doi:10.1016/j.tourman.2015.05.003 Wu, M., Zhen, Y., Zhang, W., Dong, X., Yan, X., Shan, C., . . . Han, J. (2012). A research on experimental system for internet of things major and application project. Paper presented at the 2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization, ICSEM 2012, , 1 261-263. doi:10.1109/ICSSEM.2012.6340722 Retrieved from www.scopus.com Xu, F., Buhalis, D., & Weber, J. (2017). Serious games and the gamification of tourism. Tourism Management, 60, 244-256. doi:10.1016/j.tourman.2016.11.020 Yeh, D. -., & Cheng, C. -. (2015). Recommendation system for popular tourist attractions in taiwan using delphi panel and repertory grid techniques. Tourism Management, 46, 164-176. doi:10.1016/j.tourman.2014.07.002 Yurur, O., Liu, C. H., Sheng, Z., Leung, V. C. M., Moreno, W., & Leung, K. K. (2016). Context-awareness for mobile sensing: A survey and future directions. IEEE Communications Surveys and Tutorials, 18(1), 68-93. doi:10.1109/COMST.2014.2381246 Zhang, J., Wu, T., Fan, Z., & Yim, J. (2019). Research on precision marketing model of tourism industry based on user's mobile behavior trajectory. Mobile Information Systems, 2019 doi:10.1155/2019/6560848 Zhang, J. -., & Chow, C. -. (2015). CoRe: Exploiting the personalized influence of two-dimensional geographic coordinates for location recommendations. Information Sciences, 293, 163-181. doi:10.1016/j.ins.2014.09.014 Zhu, L., Xu, C., Guan, J., & Zhang, H. (2017). SEM-PPA: A semantical pattern and preference-aware service mining method for personalized point of interest recommendation. Journal of Network and Computer Applications, 82, 35-46. doi:10.1016/j.jnca.2016.12.033 Zhu, Z., Shou, L., & Chen, K. (2016). Get into the spirit of a location by mining user-generated travelogues. Neurocomputing, 204, 61-69. doi:10.1016/j.neucom.2015.04.129 Zughoul, O., Momani, F., Almasri, O. H., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., . . . Hashim, M. (2018). Comprehensive insights into the criteria of student performance in various educational domains. IEEE Access, 6, 73245-73264. doi:10.1109/ACCESS.2018.2881282 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |