UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Numerous studies have focused on making telemedicine smart through the Internet of Things (IoT) technology. These works span a wide range of research areas to enhance telemedicine architecture such as network communications, artificial intelligence methods and techniques, IoT wearable sensors and hardware devices, smartphones and cloud computing. Accordingly, several telemedicine applications covering various human diseases have presented their works from a specific perspective and resulted in confusion regarding the IoT characteristics. Although such applications are useful and necessary for improving telemedicine contexts related to monitoring, detection and diagnostics, deriving an overall picture of how IoT characteristics are currently integrated with the telemedicine architecture is difficult. Accordingly, this study complements the academic literature with a systematic review covering all main aspects of advances in IoT-based telemedicine architecture. This study also provides a state-of-the-art telemedicine classification taxonomy under IoT and reviews works in different fields in relation to that classification. To this end, this study checked the ScienceDirect, Institute of Electrical and Electronics Engineers (IEEE) Xplore, and Web of Science databases. A total of 2121 papers were collected from 2014 to July 2020. The retrieved articles were filtered according to the defined inclusion criteria. A final set of 141 articles were selected and classified into two categories, each followed by subcategories and sections. The first category includes an IoT-based telemedicine network that accounts for 24.11% (n = 34/141). The second category includes IoT-based telemedicine healthcare services and applications that account for 75.89% (n = 107/141). This multi-field systematic review has exposed new research opportunities, motivations, recommendations and challenges that need attention for the synergistic integration of interdisciplinary works. This extensive study also lists a set of open issues and provides innovative key solutions along with a systematic review. The classification of diseases under IoT-based telemedicine is divided into 14 groups. Furthermore, the crossover in our taxonomy is demonstrated. The lifecycle of the context of IoT-based telemedicine healthcare applications is mapped for the first time, including the procedure sequencing and definition for each context. We believe that this study is a useful guide for researchers and practitioners in providing direction and valuable information for future research. This study can also address the ambiguity in the trends in IoT-based telemedicine. ? 2020 Elsevier Ltd |
References |
Abawajy, J. H., & Hassan, M. M. (2017). Federated internet of things and cloud computing pervasive patient health monitoring system. IEEE Communications Magazine, 55(1), 48-53. doi:10.1109/MCOM.2017.1600374CM Abdellatif, M. M., & Mohamed, W. (2020). Telemedicine: An IoT based remote healthcare system. International Journal of Online and Biomedical Engineering, 16(6), 72-81. doi:10.3991/ijoe.v16i06.13651 Acampora, G., Cook, D. J., Rashidi, P., & Vasilakos, A. V. (2013). A survey on ambient intelligence in healthcare. Proceedings of the IEEE, 101(12), 2470-2494. doi:10.1109/JPROC.2013.2262913 Adibi, S. (2015). A mobile health network disaster management system. Paper presented at the International Conference on Ubiquitous and Future Networks, ICUFN, , 2015-August 424-428. doi:10.1109/ICUFN.2015.7182579 Retrieved from www.scopus.com Albahri, O. S., Albahri, A. S., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Mohsin, A. H., . . . Shareef, A. H. (2019). Fault-tolerant mHealth framework in the context of IoT-based real-time wearable health data sensors. IEEE Access, 7, 50052-50080. doi:10.1109/ACCESS.2019.2910411 Alelyani, S., & Ibrahim, A. (2018). Internet-of-things in telemedicine for diabetes management. Paper presented at the 2018 15th Learning and Technology Conference, L and T 2018, 20-23. doi:10.1109/LT.2018.8368505 Retrieved from www.scopus.com Ali, S., Kibria, M. G., Jarwar, M. A., Kumar, S., & Chong, I. (2017). Microservices model in WoO based IoT platform for depressive disorder assistance. Paper presented at the International Conference on Information and Communication Technology Convergence: ICT Convergence Technologies Leading the Fourth Industrial Revolution, ICTC 2017, , 2017-December 864-866. doi:10.1109/ICTC.2017.8190800 Retrieved from www.scopus.com Alkhomsan, M. N., Hossain, M. A., Rahman, S. M. M., & Masud, M. (2017). Situation awareness in ambient assisted living for smart healthcare. IEEE Access, 5, 20716-20725. doi:10.1109/ACCESS.2017.2731363 Al-Mahmood, A., & Agyeman, M. O. (2018). On wearable devices for motivating patients with upper limb disability via gaming and home rehabilitation. Paper presented at the 2018 3rd International Conference on Fog and Mobile Edge Computing, FMEC 2018, 155-162. doi:10.1109/FMEC.2018.8364058 Retrieved from www.scopus.com Almeida, E., Ferruzca, M., & Tlapanco, M. P. M. (2014). Design of a system for early detection and treatment of depression in elderly case study doi:10.1007/978-3-319-11564-1_12 Retrieved from www.scopus.com Al-Taee, M. A., Al-Nuaimy, W., Al-Ataby, A., Muhsin, Z. J., & Abood, S. N. (2015). Mobile health platform for diabetes management based on the internet-of-things. Paper presented at the 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, AEECT 2015, doi:10.1109/AEECT.2015.7360551 Retrieved from www.scopus.com Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C., & Marrocco, G. (2014). RFID technology for IoT-based personal healthcare in smart spaces. IEEE Internet of Things Journal, 1(2), 144-152. doi:10.1109/JIOT.2014.2313981 Ani, R., Krishna, S., Anju, N., Sona, A. M., & Deepa, O. S. (2017). IoT based patient monitoring and diagnostic prediction tool using ensemble classifier. Paper presented at the 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, , 2017-January 1588-1593. doi:10.1109/ICACCI.2017.8126068 Retrieved from www.scopus.com Arulanthu, P., & Perumal, E. (2020). An intelligent IoT with cloud centric medical decision support system for chronic kidney disease prediction. International Journal of Imaging Systems and Technology, 30(3), 815-827. doi:10.1002/ima.22424 Asghari, P., Rahmani, A. M., & Javadi, H. H. S. (2019). Internet of things applications: A systematic review. Computer Networks, 148, 241-261. doi:10.1016/j.comnet.2018.12.008 Bagula, A., Mandava, M., & Bagula, H. (2018). A framework for healthcare support in the rural and low income areas of the developing world. Journal of Network and Computer Applications, 120, 17-29. doi:10.1016/j.jnca.2018.06.010 Bao, J., Ye, M., & Dou, Y. (2016). Mobile phone-based internet of things human action recognition for E-health. Paper presented at the International Conference on Signal Processing Proceedings, ICSP, , 0 957-962. doi:10.1109/ICSP.2016.7877972 Retrieved from www.scopus.com Ben Hassen, H., Dghais, W., & Hamdi, B. (2019). An E-health system for monitoring elderly health based on internet of things and fog computing. Health Information Science and Systems, 7(1) doi:10.1007/s13755-019-0087-z Berbakov, L., Pavković, B., Marković, V., & Svetel, M. (2017). Architecture and partial implementation of the remote monitoring platform for patients with movement disorders. Paper presented at the 2017 Zooming Innovation in Consumer Electronics International Conference: Galvanize Your Creativity, ZINC 2017, 22-25. doi:10.1109/ZINC.2017.7968653 Retrieved from www.scopus.com Berrocal, J., Garcia-Alonso, J., Murillo, J. M., Mendes, D., Fonseca, C., & Lopes, M. (2018). Context-aware mobile app for the multidimensional assessment of the elderly. Paper presented at the Iberian Conference on Information Systems and Technologies, CISTI, , 2018-June 1-6. doi:10.23919/CISTI.2018.8399239 Retrieved from www.scopus.com Bilic, D., Uzunovic, T., Golubovic, E., & Ustundag, B. C. (2017). Internet of things-based system for physical rehabilitation monitoring. Paper presented at the ICAT 2017 - 26th International Conference on Information, Communication and Automation Technologies, Proceedings, , 2017-December 1-6. doi:10.1109/ICAT.2017.8171641 Retrieved from www.scopus.com Bisio, I., Delfino, A., Lavagetto, F., & Sciarrone, A. (2017). Enabling IoT for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet of Things Journal, 4(1), 135-146. doi:10.1109/JIOT.2016.2628938 Borthakur, D., Dubey, H., Constant, N., Mahler, L., & Mankodiya, K. (2018). Smart fog: Fog computing framework for unsupervised clustering analytics in wearable internet of things. Paper presented at the 2017 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2017 - Proceedings, , 2018-January 472-479. doi:10.1109/GlobalSIP.2017.8308687 Retrieved from www.scopus.com Bramer, W. M., Rethlefsen, M. L., Kleijnen, J., & Franco, O. H. (2017). Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Systematic Reviews, 6(1) doi:10.1186/s13643-017-0644-y Casilari, E., Santoyo-Ramón, J. A., & Cano-García, J. M. (2017). UMAFall: A multisensor dataset for the research on automatic fall detection. Paper presented at the Procedia Computer Science, , 110 32-39. doi:10.1016/j.procs.2017.06.110 Retrieved from www.scopus.com Chae, S. -., Moon, D., Lee, D. G., & Pan, S. B. (2014). Medical image segmentation for mobile electronic patient charts using numerical modeling of IoT. Journal of Applied Mathematics, 2014 doi:10.1155/2014/815039 Chatterjee, P., Cymberknop, L. J., & Armentano, R. L. (2018). IoT-based decision support system for intelligent healthcare - applied to cardiovascular diseases. Paper presented at the Proceedings - 7th International Conference on Communication Systems and Network Technologies, CSNT 2017, 362-366. doi:10.1109/CSNT.2017.8418567 Retrieved from www.scopus.com Choi, A., Noh, S., & Shin, H. (2020). Internet-based unobtrusive tele-monitoring system for sleep and respiration. IEEE Access, 8, 76700-76707. doi:10.1109/ACCESS.2020.2989336 Choudhari, V., Dandge, V., Choudhary, N., & Sutar, R. G. (2018). A portable and low-cost 12-lead ECG device for sustainable remote healthcare. Paper presented at the Proceedings - 2018 International Conference on Communication, Information and Computing Technology, ICCICT 2018, , 2018-January 1-6. doi:10.1109/ICCICT.2018.8325879 Retrieved from www.scopus.com Colwill, J. M., Cultice, J. M., & Kruse, R. L. (2008). Trends: Will generalist physician supply meet demands of an increasing and aging population? Health Affairs, 27(3), w232-w241. doi:10.1377/hlthaff.27.3.w232 Cooper, C., Booth, A., Varley-Campbell, J., Britten, N., & Garside, R. (2018). Defining the process to literature searching in systematic reviews: A literature review of guidance and supporting studies. BMC Medical Research Methodology, 18(1) doi:10.1186/s12874-018-0545-3 Craig, J., & Patterson, V. (2005). Introduction to the practice of telemedicine. Journal of Telemedicine and Telecare, 11(1), 3-9. doi:10.1258/1357633053430494 De Silva, A. H. T. E., Sampath, W. H. P., Sameera, N. H. L., Amarasinghe, Y. W. R., & Mitani, A. (2016). Development of a wearable tele-monitoring system with IoT for bio-medical applications. Paper presented at the 2016 IEEE 5th Global Conference on Consumer Electronics, GCCE 2016, doi:10.1109/GCCE.2016.7800404 Retrieved from www.scopus.com De Venuto, D., Annese, V. F., & Sangiovanni-Vincentelli, A. L. (2016). The ultimate IoT application: A cyber-physical system for ambient assisted living. Paper presented at the Proceedings - IEEE International Symposium on Circuits and Systems, , 2016-July 2042-2045. doi:10.1109/ISCAS.2016.7538979 Retrieved from www.scopus.com DeRubertis, B. G., Pierce, M., Ryer, E. J., Trocciola, S., Kent, K. C., & Faries, P. L. (2008). Reduced primary patency rate in diabetic patients after percutaneous intervention results from more frequent presentation with limb-threatening ischemia. Journal of Vascular Surgery, 47(1), 101-108. doi:10.1016/j.jvs.2007.09.018 Divya Krishna, K., Akkala, V., Bharath, R., Rajalakshmi, P., Mohammed, A. M., Merchant, S. N., & Desai, U. B. (2016). Computer aided abnormality detection for kidney on FPGA based IoT enabled portable ultrasound imaging system. IRBM, 37(4), 189-197. doi:10.1016/j.irbm.2016.05.001 Djelouat, H., Baali, H., Amira, A., & Bensaali, F. (2018). IoT based compressive sensing for ECG monitoring. Paper presented at the Proceedings - 2017 IEEE International Conference on Internet of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social Computing, IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, , 2018-January 183-189. doi:10.1109/iThings-GreenCom-CPSCom-SmartData.2017.32 Retrieved from www.scopus.com Djelouat, H., Baali, H., Amira, A., & Bensaali, F. (2018). Joint sparsity recovery for compressive sensing based EEG system. Paper presented at the 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband, ICUWB 2017 - Proceedings, , 2018-January 1-5. doi:10.1109/ICUWB.2017.8251001 Retrieved from www.scopus.com Domingues, M. F., Alberto, N., Leitao, C. S. J., Tavares, C., De Lima, E. R., Radwan, A., . . . Antunes, P. F. C. (2019). Insole optical fiber sensor architecture for remote gait analysis - an e-health solution. IEEE Internet of Things Journal, 6(1), 207-214. doi:10.1109/JIOT.2017.2723263 Drăgulinescu, A. M. C., Manea, A. F., Fratu, O., & Drăgulinescu, A. (2022). LoRa-based medical IoT system architecture and testbed. Wireless Personal Communications, 126(1), 25-47. doi:10.1007/s11277-020-07235-z Durán-Vega, L. A., Santana-Mancilla, P. C., Buenrostro-Mariscal, R., Contreras-Castillo, J., Anido-Rifón, L. E., García-Ruiz, M. A., . . . Estrada-González, F. (2019). An IoT system for remote health monitoring in elderly adults through a wearable device and mobile application. Geriatrics (Switzerland), 4(2) doi:10.3390/geriatrics4020034 Enriko, I. K. A., Suryanegara, M., & Gunawan, D. (2018). My kardio: A telemedicine system based on machine-to-machine (M2M) technology for cardiovascular patients in rural areas with auto-diagnosis feature using k-nearest neighbor algorithm. Paper presented at the Proceedings of the IEEE International Conference on Industrial Technology, , 2018-February 1775-1780. doi:10.1109/ICIT.2018.8352452 Retrieved from www.scopus.com Fan, Y., Xu, P., Jin, H., Ma, J., & Qin, L. (2019). Vital sign measurement in telemedicine rehabilitation based on intelligent wearable medical devices. IEEE Access, 7, 54819-54823. doi:10.1109/ACCESS.2019.2913189 Fang, Y., Li, C., & Sun, L. (2016). Design of an early warning system for patients with cardiovascular diseases under mobile environment. Paper presented at the Procedia Computer Science, , 96 819-825. doi:10.1016/j.procs.2016.08.258 Retrieved from www.scopus.com Fouad, H., & Farouk, H. (2017). Heart rate sensor node analysis for designing internet of things telemedicine embedded system. Cogent Engineering, 4(1) doi:10.1080/23311916.2017.1306152 Fouad, H., Mahmoud, N. M., Issawi, M. S. E., & Al-Feel, H. (2020). Distributed and scalable computing framework for improving request processing of wearable IoT assisted medical sensors on pervasive computing system. Computer Communications, 151, 257-265. doi:10.1016/j.comcom.2020.01.020 Fujiwara, C. S., Aderaldo, C. M., Filho, R. H., & Chaves, D. A. A. (2017). The internet of things as a helping tool in the daily life of adult patients with ADHD. Paper presented at the 2017 IEEE Global Communications Conference, GLOBECOM 2017 - Proceedings, , 2018-January 1-6. doi:10.1109/GLOCOM.2017.8254442 Retrieved from www.scopus.com Fung, N. L. S., Jones, V. M., Widya, I., Broens, T. H. F., Larburu, N., Bults, R. G. A., . . . Hermens, H. J. (2016). The conceptual MADE framework for pervasive and knowledge-based decision support in telemedicine. Int.J.Knowl.Syst.Sci, 7(1), 25-39. Retrieved from www.scopus.com Garai, A., Pentek, I., Adamko, A., & Nemeth, A. (2017). A clinical system integration methodology for bio-sensory technology with cloud architecture. Acta Cybernetica, 23(2), 513-536. doi:10.14232/actacyb.23.2.2017.6 García, L., Tomás, J., Parra, L., & Lloret, J. (2019). An m-health application for cerebral stroke detection and monitoring using cloud services. International Journal of Information Management, 45, 319-327. doi:10.1016/j.ijinfomgt.2018.06.004 Ghani, A. (2019). Healthcare electronics—A step closer to future smart cities. ICT Express, 5(4), 256-260. doi:10.1016/j.icte.2018.01.009 Gia, T. N., Ali, M., Dhaou, I. B., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2017). IoT-based continuous glucose monitoring system: A feasibility study. Paper presented at the Procedia Computer Science, , 109 327-334. doi:10.1016/j.procs.2017.05.359 Retrieved from www.scopus.com Gia, T. N., Jiang, M., Rahmani, A. -., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2015). Fog computing in healthcare internet of things: A case study on ECG feature extraction. Paper presented at the Proceedings - 15th IEEE International Conference on Computer and Information Technology, CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and Computing, PICom 2015, 356-363. doi:10.1109/CIT/IUCC/DASC/PICOM.2015.51 Retrieved from www.scopus.com Gia, T. N., Rahmani, A. -., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2015). Fault tolerant and scalable IoT-based architecture for health monitoring. Paper presented at the SAS 2015 - 2015 IEEE Sensors Applications Symposium, Proceedings, doi:10.1109/SAS.2015.7133626 Retrieved from www.scopus.com Gómez, J., Oviedo, B., & Zhuma, E. (2016). Patient monitoring system based on internet of things. Paper presented at the Procedia Computer Science, , 83 90-97. doi:10.1016/j.procs.2016.04.103 Retrieved from www.scopus.com Gonzalez, E., Peña, R., Avila, A., Vargas-Rosales, C., & Munoz-Rodriguez, D. (2017). A systematic review on recent advances in mHealth systems: Deployment architecture for emergency response. Journal of Healthcare Engineering, 2017 doi:10.1155/2017/9186270 Guo, K., Li, T., Huang, R., Kang, J., & Chi, T. (2018). DDA: A deep neural network-based cognitive system for IoT-aided dermatosis discrimination. Ad Hoc Networks, 80, 95-103. doi:10.1016/j.adhoc.2018.07.014 Gupta, P. K., & Muhuri, P. K. (2018). A novel approach based on computing with words for monitoring the heart failure patients. Applied Soft Computing Journal, 72, 457-473. doi:10.1016/j.asoc.2018.07.056 Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? evaluating retrieval qualities of google scholar, PubMed, and 26 other resources. Research Synthesis Methods, 11(2), 181-217. doi:10.1002/jrsm.1378 Haghi, M., Thurow, K., & Stoll, R. (2017). Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthcare Informatics Research, 23(1), 4-15. doi:10.4258/hir.2017.23.1.4 Hassan, M. K., El Desouky, A. I., Elghamrawy, S. M., & Sarhan, A. M. (2019). A hybrid real-time remote monitoring framework with NB-WOA algorithm for patients with chronic diseases. Future Generation Computer Systems, 93, 77-95. doi:10.1016/j.future.2018.10.021 Hassan, M. K., El Desouky, A. I., Elghamrawy, S. M., & Sarhan, A. M. (2018). Intelligent hybrid remote patient-monitoring model with cloud-based framework for knowledge discovery. Computers and Electrical Engineering, 70, 1034-1048. doi:10.1016/j.compeleceng.2018.02.032 Hayati, N., & Suryanegara, M. (2017). The IoT LoRa system design for tracking and monitoring patient with mental disorder. Paper presented at the 2017 IEEE International Conference on Communication, Networks and Satellite, COMNETSAT 2017 - Proceedings, , 2018-January 135-139. doi:10.1109/COMNETSAT.2017.8263587 Retrieved from www.scopus.com Holler, J., Tsiatsis, V., Mulligan, C., Avesand, S., Karnouskos, S., & Boyle, D. (2014). From machine-to-machine to the internet of things. From machine-to-machine to the internet of things (pp. 1-331) doi:10.1016/C2012-0-03263-2 Retrieved from www.scopus.com Hong, J., Yue, Q., & Yiwen, C. (2017). Improved persuasive design: Matching personal traits and inducing effortful thinking. Paper presented at the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services, Healthcom 2017, , 2017-December 1-4. doi:10.1109/HealthCom.2017.8210841 Retrieved from www.scopus.com Hossain, M. S., & Muhammad, G. (2016). Cloud-assisted industrial internet of things (IIoT) - enabled framework for health monitoring. Computer Networks, 101, 192-202. doi:10.1016/j.comnet.2016.01.009 Hossain, M. S., & Muhammad, G. (2018). Emotion-aware connected healthcare big data towards 5G. IEEE Internet of Things Journal, 5(4), 2399-2406. doi:10.1109/JIOT.2017.2772959 Howard, S., Lang, A., Sharples, S., & Shaw, D. (2017). See I told you I was taking it! – attitudes of adolescents with asthma towards a device monitoring their inhaler use: Implications for future design. Applied Ergonomics, 58, 224-237. doi:10.1016/j.apergo.2016.06.018 Irfan, M., & Ahmad, N. (2018). Internet of medical things: Architectural model, motivational factors and impediments. Paper presented at the 2018 15th Learning and Technology Conference, L and T 2018, 6-13. doi:10.1109/LT.2018.8368495 Retrieved from www.scopus.com Ivascu, T., Manate, B., & Negru, V. (2016). A multi-agent architecture for ontology-based diagnosis of mental disorders. Paper presented at the Proceedings - 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2015, 423-430. doi:10.1109/SYNASC.2015.69 Retrieved from www.scopus.com Jebadurai, J., & Dinesh Peter, J. (2018). Super-resolution of retinal images using multi-kernel SVR for IoT healthcare applications. Future Generation Computer Systems, 83, 338-346. doi:10.1016/j.future.2018.01.058 Jiang, Y., Qin, Y., Kim, I., & Wang, Y. (2017). Towards an IoT-based upper limb rehabilitation assessment system. Paper presented at the Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2414-2417. doi:10.1109/EMBC.2017.8037343 Retrieved from www.scopus.com Kan, C., Chen, Y., Leonelli, F., & Yang, H. (2015). Mobile sensing and network analytics for realizing smart automated systems towards health internet of things. Paper presented at the IEEE International Conference on Automation Science and Engineering, , 2015-October 1072-1077. doi:10.1109/CoASE.2015.7294241 Retrieved from www.scopus.com Kan, C., Leonelli, F. M., & Yang, H. (2016). Map reduce for optimizing a large-scale dynamic network - the internet of hearts. Paper presented at the Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, , 2016-October 2962-2965. doi:10.1109/EMBC.2016.7591351 Retrieved from www.scopus.com Kang, J. J., Luan, T. H., & Larkin, H. (2016). Enhancement of sensor data transmission by inference and efficient data processing doi:10.1007/978-981-10-2741-3_7 Retrieved from www.scopus.com Kang, M., Park, E., Cho, B. H., & Lee, K. -. (2018). Recent patient health monitoring platforms incorporating internet of things-enabled smart devices. International Neurourology Journal, 22, S76-S82. doi:10.5213/inj.1836144.072 Karimkhani, C., Dellavalle, R. P., Coffeng, L. E., Flohr, C., Hay, R. J., Langan, S. M., . . . Naghavi, M. (2017). Global skin disease morbidity and mortality an update from the global burden of disease study 2013. JAMA Dermatology, 153(5), 406-412. doi:10.1001/jamadermatol.2016.5538 Kim, B. (2017). A distributed coexistence mitigation scheme for IoT-based smart medical systems. Journal of Information Processing Systems, 13(6), 1602-1612. doi:10.3745/JIPS.03.0087 Kortuem, G., Kawsar, F., Sundramoorthy, V., & Fitton, D. (2010). Smart objects as building blocks for the internet of things. IEEE Internet Computing, 14(1), 44-51. doi:10.1109/MIC.2009.143 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |