UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
A facile electrochemical sensor based on single-walled carbon nanotubes/magnesium layered hydroxide-3-(4-methoxyphenyl) propionate nanocomposites paste electrode (MWCNT/MLH-MPP) for determination of bisphenol A (BPA) and uric acid (UA) was constructed in this study. According to experiments, several parameters affecting the electroanalytical responses of the prepared electrode were optimised, such as amount of modifier, square wave voltammetry parameters, and pH effect. Under optimum experimental conditions, electrochemical current of BPA and UA oxidation were linearly proportional to the concentrations from 3.0 ? 10?7 M to 1.0 ? 10?4 M and 1.0 ? 10?7 M to 1.0 ? 10?4 M for BPA and UA respectively with the both limit of detection of 5.0 ? 10?8 M. The small percentage of relative peak currents changes with added some interference indicated that the modified electrode can be used for the determination of BPA and UA in real samples such as baby teether and urine. ? 2021. The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
References |
Chen, X. B., Calder, A. G., Prasitkusol, P., Kyle, D. J., & Jayasuriya, M. C. N. (1998). Determination of 15N isotopic enrichment and concentrations of allantoin and uric acid in urine by gas chromatography/mass spectrometry. Journal of Mass Spectrometry, 33(2), 130-137. doi:10.1002/(SICI)1096-9888(199802)33:2<130::AID-JMS616>3.0.CO;2-Y D'Antuono, A., Dall'Orto, V. C., Balbo, A. L., Sobral, S., & Rezzano, I. (2001). Determination of bisphenol A in food-simulating liquids using LCED with a chemically modified electrode. Journal of Agricultural and Food Chemistry, 49(3), 1098-1101. doi:10.1021/jf000660n Figueiredo, M. P., Cunha, V. R. R., Leroux, F., Taviot-Gueho, C., Nakamae, M. N., Kang, Y. R., . . . Constantino, V. R. L. (2018). Iron-based layered double hydroxide implants: Potential drug delivery carriers with tissue biointegration promotion and blood microcirculation preservation. ACS Omega, 3(12), 18263-18274. doi:10.1021/acsomega.8b02532 Ghanam, A., Lahcen, A. A., & Amine, A. (2017). Electroanalytical determination of bisphenol A: Investigation of electrode surface fouling using various carbon materials. Journal of Electroanalytical Chemistry, 789, 58-66. doi:10.1016/j.jelechem.2017.02.026 Gómez, M. J., Agüera, A., Mezcua, M., Hurtado, J., Mocholí, F., & Fernández-Alba, A. R. (2007). Simultaneous analysis of neutral and acidic pharmaceuticals as well as related compounds by gas chromatography-tandem mass spectrometry in wastewater. Talanta, 73(2), 314-320. doi:10.1016/j.talanta.2007.03.053 Guan, Y., Chu, Q., & Ye, J. (2004). Determination of uric acid in human saliva by capillary electrophoresis with electrochemical detection: Potential application in fast diagnosis of gout. Analytical and Bioanalytical Chemistry, 380(7-8), 913-917. doi:10.1007/s00216-004-2848-y Guo, X. M., Guo, B., Li, C., & Wang, Y. L. (2016). Amperometric highly sensitive uric acid sensor based on manganese(III)porphyrin-graphene modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 783, 8-14. doi:10.1016/j.jelechem.2016.10.039 Hashim, N., Misuan, N. S., Isa, I. M., Bakar, S. A., Mustafar, S., Mamat, M., . . . Sharif, S. N. M. (2020). Carboxymethylcellulose-coated magnesium-layered hydroxide nanocomposite for controlled release of 3-(4-methoxyphenyl)propionic acid. Arabian Journal of Chemistry, 13(2), 3974-3987. doi:10.1016/j.arabjc.2019.04.004 Hashim, N., Misuan, N. S., Md Isa, I., Kamari, A., Mohamed, A., Bakar, S. A., & Hussein, M. Z. (2016). Development of a novel nanocomposite consisting of 3-(4-methoxyphenyl)propionic acid and magnesium layered hydroxide for controlled-release formulation. Journal of Experimental Nanoscience, 11(10), 776-797. doi:10.1080/17458080.2016.1171916 Hegnerová, K., & Homola, J. (2010). Surface plasmon resonance sensor for detection of bisphenol A in drinking water. Sensors and Actuators, B: Chemical, 151(1), 177-179. doi:10.1016/j.snb.2010.09.025 Hou, K., Huang, L., Qi, Y., Huang, C., Pan, H., & Du, M. (2015). A bisphenol A sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites. Materials Science and Engineering C, 49, 640-647. doi:10.1016/j.msec.2015.01.064 Hussein, M. Z., Hashim, N., Yahaya, A. H., & Zainal, Z. (2011). Synthesis of dichlorprop-Zn/Al-hydrotalcite nanohybrid and its controlled release property. Sains Malaysiana, 40(8), 887-896. Retrieved from www.scopus.com Kumar, M., Fu, Y., Wang, M., Swamy, B. E. K., Jayaprakash, G. K., & Zhao, W. (2021). Influence of cationic surfactant cetyltrimethylammonium bromide for electrochemical detection of guanine, uric acid and dopamine. Journal of Molecular Liquids, 321 doi:10.1016/j.molliq.2020.114893 Lakshmi, D., Whitcombe, M. J., Davis, F., Sharma, P. S., & Prasad, B. B. (2011). Electrochemical detection of uric acid in mixed and clinical samples: A review. Electroanalysis, 23(2), 305-320. doi:10.1002/elan.201000525 Li, Y., Yang, C., Ning, J., & Yang, Y. (2014). Cloud point extraction for the determination of bisphenol A, bisphenol AF and tetrabromobisphenol A in river water samples by high-performance liquid chromatography. Analytical Methods, 6(10), 3285-3290. doi:10.1039/c3ay42191k Liang, Z., Zhai, H., Chen, Z., Wang, H., Wang, S., Zhou, Q., & Huang, X. (2016). A simple, ultrasensitive sensor for gallic acid and uric acid based on gold microclusters/sulfonate functionalized graphene modified glassy carbon electrode. Sensors and Actuators, B: Chemical, 224, 915-925. doi:10.1016/j.snb.2015.10.101 Livia, A. D. G. (2020). J.Electrochem.Soc, 167, 037506. Retrieved from www.scopus.com Nontawong, N., Amatatongchai, M., Jarujamrus, P., Nacapricha, D., & Lieberzeit, P. A. (2021). Novel dual-sensor for creatinine and 8-hydroxy-2'-deoxyguanosine using carbon-paste electrode modified with molecularly imprinted polymers and multiple-pulse amperometry. Sensors and Actuators, B: Chemical, 334 doi:10.1016/j.snb.2021.129636 Osteryoung, J. G., & Osteryoung, R. A. (1985). Square wave voltammetry. Analytical Chemistry, 57(1) doi:10.1021/ac00279a789 Plazek, D. J., & Choy, I. C. (1989). The physical properties of bisphenol‐a‐based epoxy resins during and after curing. II. creep behavior above and below the glass transition temperature. Journal of Polymer Science Part B: Polymer Physics, 27(2), 307-324. doi:10.1002/polb.1989.090270207 Pruneanu, S., Biris, A. R., Pogacean, F., Socaci, C., Coros, M., Rosu, M. C., . . . Biris, A. S. (2015). The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta, 154, 197-204. doi:10.1016/j.electacta.2014.12.046 Rais, N. S. M., Isa, I. M., Hashim, N., Saidin, M. I., Yazid, S. N. A. M., Ahmad, M. S., . . . Mukdasai, S. (2019). Simultaneously determination of bisphenol A and uric acid by zinc/aluminum-layered double hydroxide-2-(2,4-dichlorophenoxy) propionate paste electrode. International Journal of Electrochemical Science, 14(8), 7911-7924. doi:10.20964/2019.08.75 Saidin, M. I., Md Isa, I., Ahmad, M., Hashim, N., Kamari, A., Ghani, S. A., & Si, S. M. (2016). Square wave anodic stripping voltammetry of copper(II) at a MWCNT paste electrode modified with a tetracarbonylmolybdenum(0) nanocomposite. Microchimica Acta, 183(4), 1441-1448. doi:10.1007/s00604-016-1771-1 Stojanović, Z. S., Đurović, A. D., Ashrafi, A. M., Koudelková, Z., Zítka, O., & Richtera, L. (2020). Highly sensitive simultaneous electrochemical determination of reduced and oxidized glutathione in urine samples using antimony trioxide modified carbon paste electrode. Sensors and Actuators, B: Chemical, 318 doi:10.1016/j.snb.2020.128141 Stradiotto, N. R., Yamanaka, H., & Zanoni, M. V. B. (2003). Electrochemical sensors: A powerful tool in analytical chemistry. Journal of the Brazilian Chemical Society, 14(2), 159-173. doi:10.1590/S0103-50532003000200003 Švancara, I., Vytřas, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis, 21(1), 7-28. doi:10.1002/elan.200804340 Wijemanne, N., Soysa, P., Wijesundara, P. S., & Perera, H. (2018). Int.J.Anal.Chem, 2018, 1. Retrieved from www.scopus.com Yin, H., & Tang, Z. (2016). Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chemical Society Reviews, 45(18), 4873-4891. doi:10.1039/c6cs00343e Zainul, R., Azis, N. A., Isa, I. M., Hashim, N., Ahmad, M. S., Saidin, M. I., & Mukdasai, S. (2019). Zinc/aluminium–quinclorac layered nanocomposite modified multi-walled carbon nanotube paste electrode for electrochemical determination of bisphenol A. Sensors (Switzerland), 19(4) doi:10.3390/s19040941 Zhan, T., Song, Y., Li, X., & Hou, W. (2016). Electrochemical sensor for bisphenol A based on ionic liquid functionalized zn-al layered double hydroxide modified electrode. Materials Science and Engineering C, 64, 354-361. doi:10.1016/j.msec.2016.03.093 Zhang, L., Feng, J., Chou, K. -., Su, L., & Hou, X. (2017). Simultaneously electrochemical detection of uric acid and ascorbic acid using glassy carbon electrode modified with chrysanthemum-like titanium nitride. Journal of Electroanalytical Chemistry, 803, 11-18. doi:10.1016/j.jelechem.2017.09.006 Zhang, X., Zhu, D., Huang, C., Sun, Y., & Lee, Y. -. (2015). Sensitive detection of bisphenol A in complex samples by in-column molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchemical Journal, 121, 1-5. doi:10.1016/j.microc.2015.01.012 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |