UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This paper presents a state variable feedback (SVF) control with proportional gain to control a one-link flexible manipulator incorporating payload. The dynamic model of a one-link flexible manipulator is developed through a finite element method. The system is uncertain due to the variation of payloads and numbers of elements. There is a challenge in designing a controller for each number of elements. To obtain the effectiveness of the controllers, a combination of SVF control-based LQR controls with proportional gain is developed for a flexible link manipulator with payload variations. An assessment is conducted to examine the input tracking controller capability of the hub angular position, deflection, hub velocity and end-point residual of the one-link flexible manipulator. The responses of the system are shown in domains of time and frequency, while the SVF control with proportional gain schemes is also discussed. This study finds that the payload effects on the response incorporating payload with SVF control and proportional gain schemes can provide input tracking performance with zero steady state error. ? 2021 International Institute of Acoustics and Vibrations. All rights reserved. |
References |
Alandoli, E. A., Rashid, M. Z. A., & Sulaiman, M. (2017). A comparison of PID and LQR controllers for position tracking and vibration suppression of flexible link manipulator. Journal of Theoretical and Applied Information Technology, 95(13), 2949-2955. Retrieved from www.scopus.com Aoustin, Y., Chevallereau, C., Glumineau, A., & Moog, C. H. (1994). Experimental results for the end-effector control of a single flexible robotic arm. IEEE Transactions on Control Systems Technology, 2(4), 371-381. doi:10.1109/87.338658 Deng, H., Sun, J. -., Huang, S. -., & Cao, G. -. (2015). Vibration suppression of the flexible manipulator using optimal input shaper and linear quadratic regulator. Paper presented at the 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2015, 255-260. doi:10.1109/URAI.2015.7358948 Retrieved from www.scopus.com Dinesh Singh Rana, D. (2014). Modelling, stability analysis and control of flexible single link robotic manipulator. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(2), 7390-7401. Retrieved from www.scopus.com Dog̃an, M., & Istefanopulos, Y. (2007). Optimal nonlinear controller design for flexible robot manipulators with adaptive internal model. IET Control Theory and Applications, 1(3), 770-778. doi:10.1049/iet-cta:20050272 Dwivedy, S. K., & Eberhard, P. (2006). Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory, 41(7), 749-777. doi:10.1016/j.mechmachtheory.2006.01.014 Huang, Y., & Rong, H. -. (2017). Free vibration of axially inhomogeneous beams that are made of functionally graded materials. International Journal of Acoustics and Vibrations, 22(1), 68-73. doi:10.20855/ijav.2017.22.1452 Ingole, S. B., & Chatterjee, A. (2017). Joint stiffness identification: A three-parameter joint model of cantilever beam. International Journal of Acoustics and Vibrations, 22(1), 3-13. doi:10.20855/ijav.2017.22.1445 Khairudin, M. (2018). PID control for a manipulator robot using internet networking and matlab-based. Paper presented at the Journal of Physics: Conference Series, , 1140(1) doi:10.1088/1742-6596/1140/1/012004 Retrieved from www.scopus.com Khairudin, M., Mohamed, Z., & Husain, A. R. (2011). Dynamic model and robust control of flexible link robot manipulator. Telkomnika, 9(2), 279-286. doi:10.12928/telkomnika.v9i2.698 Khairudin, M., Mohamed, Z., & Husain, A. R. (2014). System identification and LMI based robust PID control of a two-link flexible manipulator. Telkomnika (Telecommunication Computing Electronics and Control), 12(4), 829-838. doi:10.12928/TELKOMNIKA.v12i4.293 Martins, J. M., Mohamed, Z., Tokhi, M. O., Sá da Costa, J., & Botto, M. A. (2003). Approaches for dynamic modelling of flexible manipulator systems. IEE Proceedings: Control Theory and Applications, 150(4), 401-411. doi:10.1049/ip-cta:20030496 Mohamed, Z., Khairudin, M., Husain, A. R., & Subudhi, B. (2016). Linear matrix inequality-based robust proportional derivative control of a two-link flexible manipulator. JVC/Journal of Vibration and Control, 22(5), 1244-1256. doi:10.1177/1077546314536427 Mohamed, Z., & Tokhi, M. O. (2004). Command shaping techniques for vibration control of a flexible robot manipulator. Mechatronics, 14(1), 69-90. doi:10.1016/S0957-4158(03)00013-8 Nazemizadeh, M., & Nohooji, H. R. (2015). An analysis of the finite element method applied on dynamic motion and maximum payload planning of flexible manipulators. Transactions of Famena, 39(4), 15-22. Retrieved from www.scopus.com Razmjooy, N., Ramezani, M., & Namadchian, A. (2016). A new LQR optimal control for a single-link flexible joint robot manipulator based on grey wolf optimizer. Majlesi Journal of Electrical Engineering, 10(3), 53-60. Retrieved from www.scopus.com Schindele, D., & Aschemann, H. (2014). Adaptive LQR-control design and friction compensation for flexible high-speed rack feeders. Journal of Computational and Nonlinear Dynamics, 9(1) doi:10.1115/1.4025351 Tahir, N. M., Bature, A. A., Bature, U. I., Sambo, A. U., & Babawuro, A. Y. (2016). Vibration and tracking control of a single-link flexible manipulator using LQR and command shaping. Journal of Multidisciplinary Engineering Science and Technology, 3(3), 45-67. Retrieved from www.scopus.com Tahir, N. M., Hassan, S. M., Mohamed, Z., & Ibrahim, A. G. (2017). Output based input shaping for optimal control of single link flexible manipulator. International Journal on Smart Sensing and Intelligent Systems, 10(2), 367-386. doi:10.21307/ijssis-2017-216 Tokhi, M. O., Mohamed, Z., & Shaheed, M. H. (2001). Dynamic characterisation of a flexible manipulator system. Robotica, 19(5), 571-580. doi:10.1017/S0263574700003209 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |