UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Water has been proven to be an effective additive to enhance the growth rate and purity of the synthesized carbon nanotubes (CNTs) in the chemical vapor deposition (CVD) method. Due to similar CNT growth parameters in CVD and flame environment, it is expected that a similar effect can be replicated in CNT flame synthesis to a certain degree. The present study analyzes the effect of water addition to the fuel stream toward the CNT growth in methane diffusion flame under atmospheric conditions. Water vapor was introduced into the fuel gas by passing the methane gas through a water bubbler, and the growth condition was analyzed based on a cross-sectional analysis of the grown CNT on top of nickel wire. The water addition to the fuel reduces the axial extent of the growth region due to the reduction in flame height. Even though the spatial distribution of the growth region in the flame with water additive changes compared to that of the flame without water, the average growth region temperature is relatively identical for both flames at a similar height above the burner. The synthesized CNT morphology did not change with the addition of water due to similar temperatures within the growth region and inhomogeneity of catalyst nanoparticle formation. Remarkably, the thickness of the amorphous carbon layer in the growth region decreases by almost 20% in water-assisted flame due to the reduction of carbon supply caused by the modification of gas-phase chemical reaction and water vapor etching effects that happen within the growth region. Numerical simulation of the flame structure shows that addition of water vapor in the fuel stream lowers the methane concentration within the CNT growth region and simultaneously promotes water etching effects on the amorphous carbon layer. ? 2021 Taylor & Francis Group, LLC. |
References |
Bartholomew, C. H. (1982). Carbon deposition in steam reforming and methanation. Catalysis Reviews, 24(1), 67-112. doi:10.1080/03602458208079650 Chen, G., Davis, R. C., Futaba, D. N., Sakurai, S., Kobashi, K., Yumura, M., & Hata, K. (2016). A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties. Nanoscale, 8(1), 162-171. doi:10.1039/c5nr05537g Cho, W., Schulz, M., & Shanov, V. (2014). Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon, 72, 264-273. doi:10.1016/j.carbon.2014.01.074 Friedman, R. (1953). Measurement of the temperature profile in a laminar flame. Laminar Combust.Detonation Waves., 148, 259-263. Retrieved from www.scopus.com Futaba, D. N., Goto, J., Yasuda, S., Yamada, T., Yumura, M., & Hata, K. (2009). General rules governing the highly efficient growth of carbon nanotubes. Advanced Materials, 21(47), 4811-4815. doi:10.1002/adma.200901257 Futaba, D. N., Hata, K., Yamada, T., Mizuno, K., Yumura, M., & Iijima, S. (2005). Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Physical Review Letters, 95(5) doi:10.1103/PhysRevLett.95.056104 Geng, J., Motta, M., Engels, V., Luo, J., & Johnson, B. F. G. (2016). Temperature threshold and water role in CVD growth of single-walled carbon nanotubes. Frontiers in Materials, 3 doi:10.3389/fmats.2016.00004 Guo, Y., Zhai, G., Ru, Y., Wu, C., Jia, X., Sun, Y., . . . Sun, B. (2018). Effect of different catalyst preparation methods on the synthesis of carbon nanotubes with the flame pyrolysis method. AIP Advances, 8(3) doi:10.1063/1.5020936 Hamzah, N., Mohd Yasin, M. F., Mohd Yusop, M. Z., Saat, A., & Mohd Subha, N. A. (2019). Growth region characterization of carbon nanotubes synthesis in heterogeneous flame environment with wire-based macro-image analysis. Diamond and Related Materials, 99 doi:10.1016/j.diamond.2019.107500 Hamzah, N., Yasin, M. F. M., Yusop, M. Z. M., Saat, A., & Subha, N. A. M. (2017). Rapid production of carbon nanotubes: A review on advancement in growth control and morphology manipulations of flame synthesis. Journal of Materials Chemistry A, 5(48), 25144-25170. doi:10.1039/c7ta08668g Hamzah, N., Yasin, M. F. M., Yusop, M. Z. M., Zainal, M. T., & Rosli, M. A. F. (2019). Identification of cnt growth region and optimum time for catalyst oxidation: Experimental and modelling studies of flame synthesis. Evergreen, 6(1), 85-91. doi:10.5109/2328409 Han, W., Ya, Y., Chu, H., Cao, W., Yan, Y., & Chen, L. (2020). Morphological evolution of soot emissions from a laminar co-flow methane diffusion flame with varying oxygen concentrations. Journal of the Energy Institute, 93(1), 224-234. doi:10.1016/j.joei.2019.03.006 Hasegawa, K., & Noda, S. (2011). Moderating carbon supply and suppressing ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon, 49(13), 4497-4504. doi:10.1016/j.carbon.2011.06.061 Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., & Iijima, S. (2004). Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 306(5700), 1362-1364. doi:10.1126/science.1104962 Heras, J. M., & Viscido, L. (1988). The behavior of water on metal surfaces. Catalysis Reviews, 30(2), 281-338. doi:10.1080/01614948808078621 Hu, J. L., Yang, C. C., & Huang, J. H. (2008). Vertically-aligned carbon nanotubes prepared by water-assisted chemical vapor deposition. Diamond and Related Materials, 17(12), 2084-2088. doi:10.1016/j.diamond.2008.07.010 Jourdain, V., & Bichara, C. (2013). Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon, 58, 2-39. doi:10.1016/j.carbon.2013.02.046 Little, R. B. (2003). Mechanistic aspects of carbon nanotube nucleation and growth. Journal of Cluster Science, 14(2), 135-185. doi:10.1023/A:1024841621054 Liu, S., Zhang, Y., Lin, Y., Zhao, Z., & Li, Q. (2014). Tailoring the structure and nitrogen content of nitrogen-doped carbon nanotubes by water-assisted growth. Carbon, 69, 247-254. doi:10.1016/j.carbon.2013.12.023 Matsumoto, N., Oshima, A., Ishizawa, S., Chen, G., Hata, K., & Futaba, D. N. (2018). One millimeter per minute growth rates for single wall carbon nanotube forests enabled by porous metal substrates. RSC Advances, 8(14), 7810-7817. doi:10.1039/c7ra13093g Matsumoto, N., Oshima, A., Ishizawa, S., Chen, G., Hata, K., & Futaba, D. N. (2018). One millimeter per minute growth rates for single wall carbon nanotube forests enabled by porous metal substrates. RSC Advances, 8(14), 7810-7817. doi:10.1039/c7ra13093g Merchan-Merchan, W., Saveliev, A. V., Kennedy, L., & Jimenez, W. C. (2010). Combustion synthesis of carbon nanotubes and related nanostructures. Progress in Energy and Combustion Science, 36(6), 696-727. doi:10.1016/j.pecs.2010.02.005 Moisala, A., Nasibulin, A. G., & Kauppinen, E. I. (2003). The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - A review. Journal of Physics Condensed Matter, 15(42), S3011-S3035. doi:10.1088/0953-8984/15/42/003 Okada, S., Sugime, H., Hasegawa, K., Osawa, T., Kataoka, S., Sugiura, H., & Noda, S. (2018). Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes. Carbon, 138, 1-7. doi:10.1016/j.carbon.2018.05.060 Padilla, O., Gallego, J., & Santamaría, A. (2018). Using benzene as growth precursor for the carbon nanostructure synthesis in an inverse diffusion flame reactor. Diamond and Related Materials, 86, 128-138. doi:10.1016/j.diamond.2018.04.024 Padilla, R. E., Escofet-Martin, D., Pham, T., Pitz, W. J., & Dunn-Rankin, D. (2018). Structure and behavior of water-laden CH4/air counterflow diffusion flames. Combustion and Flame, 196, 439-451. doi:10.1016/j.combustflame.2018.06.037 Schünemann, C., Schäffel, F., Bachmatiuk, A., Queitsch, U., Sparing, M., Rellinghaus, B., . . . Rümmeli, M. H. (2011). Catalyst poisoning by amorphous carbon during carbon nanotube growth: Fact or fiction? ACS Nano, 5(11), 8928-8934. doi:10.1021/nn2031066 Suzuki, S., & Mori, S. (2018). Synthesis of carbon nanotubes from biofuel as a carbon source through a diesel engine. Diamond and Related Materials, 82, 79-86. doi:10.1016/j.diamond.2018.01.003 Turns, S. R. (1996). An Introduction to Combustion: Concepts and Applications, Retrieved from www.scopus.com Vander Wal, R. L. (2002). Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment. Combustion and Flame, 130(1-2), 37-47. doi:10.1016/S0010-2180(02)00360-7 Vander Wal, R. L., Hall, L. J., & Berger, G. M. (2002). The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts. Proceedings of the Combustion Institute, 29(1), 1079-1085. doi:10.1016/S1540-7489(02)80136-5 Vander Wal, R. L., & Ticich, T. M. (2001). Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. Journal of Physical Chemistry B, 105(42), 10249-10256. doi:10.1021/jp012838u Vicariotto, M., & Dunn-Rankin, D. (2018). Temperature profiles and extinction limits of a coflow water-vapor laden methane/air diffusion flame. Experiments in Fluids, 59(9) doi:10.1007/s00348-018-2589-x Xiong, X., Zhao, P., Ren, R., Cui, X., & Ji, S. (2019). Flame-synthesis of carbon nanotube forests on metal mesh structure: Dependence, morphology, and application. Nanomaterials, 9(9) doi:10.3390/nano9091188 Yamada, T., Maigne, A., Yudasaka, M., Mizuno, K., Futaba, D. N., Yumura, M., . . . Hata, K. (2008). Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Letters, 8(12), 4288-4292. doi:10.1021/nl801981m Yoshihara, N., Ago, H., & Tsuji, M. (2007). Chemistry of water-assisted carbon nanotube growth over fe-Mo/MgO catalyst. Journal of Physical Chemistry C, 111(31), 11577-11582. doi:10.1021/jp072887s Yu, G., Gong, J., Wang, S., Zhu, D., He, S., & Zhu, Z. (2006). Etching effects of ethanol on multi-walled carbon nanotubes. Carbon, 44(7), 1218-1224. doi:10.1016/j.carbon.2005.10.050 Zainal, M. T. (2021). Multi-Scale Modelling on the Effects of Flame Parameters on Carbon Nanotube Growth in Non-Premixed Flames, Retrieved from www.scopus.com Zainal, M. T., Mohd Yasin, M. F., Abdul Wahid, M., & Mohd Sies, M. (2021). A flame structure approach for controlling carbon nanotube growth in flame synthesis. Combustion Science and Technology, 193(8), 1326-1342. doi:10.1080/00102202.2019.1694518 Zainal, M. T., Mohd Yasin, M. F., Ira Irawan, M. A., Roslan, M. F., Hamzah, N., & Mohd Yusop, M. Z. (2018). Investigation on the deactivation of cobalt and iron catalysts in catalytic growth of carbon nanotube using a growth rate model. J.Adv.Res.Mater.Sci., 51(1), 11-22. Retrieved from www.scopus.com Zainal, M. T., Mohd Yasin, M. F., & Wahid, M. A. (2016). Investigation of the coupled effects of temperature and partial pressure on catalytic growth of carbon nanotubes using a modified growth rate model. Materials Research Express, 3(10) doi:10.1088/2053-1591/3/10/105040 Zainal, M. T., Mohd Yasin, M. F., Wan Ali, W. F. F., Tamrin, K. F., & Ani, M. H. (2020). Carbon precursor analysis for catalytic growth of carbon nanotube in flame synthesis based on semi-empirical approach. Carbon Letters, 30(5), 569-579. doi:10.1007/s42823-020-00127-z Zhang, C., Tian, B., Chong, C. T., Ding, B., Fan, L., Chang, X., & Hochgreb, S. (2020). Synthesis of single-walled carbon nanotubes in rich hydrogen/air flames. Materials Chemistry and Physics, 254 doi:10.1016/j.matchemphys.2020.123479 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |