UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2309-608X
Main Author :Al-Obaidi, Jameel R.
Title :Mycopharmaceuticals and nutraceuticals: promising agents to improve human well-being and life quality
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Fungi
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Fungi, especially edible mushrooms, are considered as high-quality food with nutritive and functional values. They are of considerable interest and have been used in the synthesis of nutraceutical supplements due to their medicinal properties and economic significance. Specific fungal groups, including predominantly filamentous endophytic fungi from Ascomycete phylum and several Basidiomycetes, produce secondary metabolites (SMs) with bioactive properties that are involved in the antimicrobial and antioxidant activities. These beneficial fungi, while high in protein and important fat contents, are also a great source of several minerals and vitamins, in particular B vitamins that play important roles in carbohydrate and fat metabolism and the maintenance of the nervous system. This review article will summarize and discuss the abilities of fungi to produce antioxidant, anticancer, antiobesity, and antidiabetic molecules while also reviewing the evidence from the last decade on the importance of research in fungi related products with direct and indirect impact on human health. ? 2021 by the authors. Licensee MDPI, Basel, Switzerland.

References

Akanbi, M. H. J., Post, E., Van Putten, S. M., De Vries, L., Smisterova, J., Meter-Arkema, A. H., . . . Scholtmeijer, K. (2013). The antitumor activity of hydrophobin SC3, a fungal protein. Applied Microbiology and Biotechnology, 97(10), 4385-4392. doi:10.1007/s00253-012-4311-x

Al-Obaidi, J. R. (2016). Proteomics of edible mushrooms: A mini-review. Electrophoresis, 37(10), 1257-1263. doi:10.1002/elps.201600031

Al‐obaidi, J. R., Alobaidi, K. H., Al‐taie, B. S., Wee, D. H. -., Hussain, H., Jambari, N. N., . . . Ariffin, N. S. (2021). Uncovering prospective role and applications of existing and new nutraceuticals from bacterial, fungal, algal and cyanobacterial, and plant sources. Sustainability (Switzerland), 13(7) doi:10.3390/su13073671

Andersen, M. R., Nielsen, J. B., Klitgaard, A., Petersen, L. M., Zachariasen, M., Hansen, T. J., . . . Mortensen, U. H. (2013). Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 110(1), E99-E107. doi:10.1073/pnas.1205532110

Bakir, T., Karadeniz, M., & Unal, S. (2018). Investigation of antioxidant activities of pleurotus ostreatus stored at different temperatures. Food Science and Nutrition, 6(4), 1040-1044. doi:10.1002/fsn3.644

Beekman, A. M., & Barrow, R. A. (2014). Fungal metabolites as pharmaceuticals. Australian Journal of Chemistry, 67(6), 827-843. doi:10.1071/CH13639

Bills, G. F., & Gloer, J. B. (2017). Biologically active secondary metabolites from the fungi. The fungal kingdom (pp. 1087-1119) doi:10.1128/9781555819583.ch54 Retrieved from www.scopus.com

Bugeda, A., Garrigues, S., Gandía, M., Manzanares, P., Marcos, J. F., & Coca, M. (2020). The antifungal protein afpb induces regulated cell death in its parental fungus penicillium digitatum. MSphere, 5(4) doi:10.1128/MSPHERE.00595-20

Cai, C., Ma, J., Han, C., Jin, Y., Zhao, G., & He, X. (2019). Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, sanghuangporus sanghuang. Scientific Reports, 9(1) doi:10.1038/s41598-019-43886-0

Calvo, A. M., & Cary, J. W. (2015). Association of fungal secondary metabolism and sclerotial biology. Frontiers in Microbiology, 6(FEB) doi:10.3389/fmicb.2015.00062

Cardwell, G., Bornman, J. F., James, A. P., & Black, L. J. (2018). A review of mushrooms as a potential source of dietary vitamin D. Nutrients, 10(10) doi:10.3390/nu10101498

Chakravarthi, B. V. S. K., Sujay, R., Kuriakose, G. C., Karande, A. A., & Jayabaskaran, C. (2013). Inhibition of cancer cell proliferation and apoptosis-inducing activity of fungal taxol and its precursor baccatin III purified from endophytic fusarium solani. Cancer Cell International, 13(1) doi:10.1186/1475-2867-13-105

Chang, C. -., Lin, C. -., Lu, C. -., Martel, J., Ko, Y. -., Ojcius, D. M., . . . Lai, H. -. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 6 doi:10.1038/ncomms8489

Chang, C. L. -., Li, T. -., Hou, C. -., & Yang, W. -. (2011). Anti-hyperglycemic properties of crude extract and triterpenes from poria cocos. Evidence-Based Complementary and Alternative Medicine, 2011 doi:10.1155/2011/128402

Chang, S. -., & Miles, P. G. (2004). Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact: Second edition. Mushrooms: Cultivation, nutritional value, medicinal effect, and environmental impact (pp. 1-451) Retrieved from www.scopus.com

Chang, Y. -., Hsiao, Y. -., Wu, M. -., Ou, C. -., Lin, Y. -., Lue, K. -., & Ko, J. -. (2013). Interruption of lung cancer cell migration and proliferation by fungal immunomodulatory protein FIP-fve from flammulina velutipes. Journal of Agricultural and Food Chemistry, 61(49), 12044-12052. doi:10.1021/jf4030272

Chowdhury, M. M. H., Kubra, K., & Ahmed, S. R. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in bangladesh. Annals of Clinical Microbiology and Antimicrobials, 14(1) doi:10.1186/s12941-015-0067-3

De Souza, R. A., Kamat, N. M., & Nadkarni, V. S. (2018). Purification and characterisation of a sulphur rich melanin from edible mushroom termitomyces albuminosus heim. Mycology, 9(4), 296-306. doi:10.1080/21501203.2018.1494060

Demain, A. (2014). Valuable secondary metabolites from fungi. Biosynth Mol Genet Fungal Second Metab SE - 1, , 1-15. Retrieved from www.scopus.com

Ding, X., Hou, Y., Zhu, Y., Wang, P., Fu, L., Zhu, H., . . . Hou, W. (2015). Structure elucidation, anticancer and antioxidant activities of a novel polysaccharide from gomphus clavatus gray. Oncology Reports, 33(6), 3162-3170. doi:10.3892/or.2015.3921

Frisvad, J. C., Houbraken, J., Popma, S., & Samson, R. A. (2013). Two new penicillium species penicillium buchwaldii and penicillium spathulatum, producing the anticancer compound asperphenamate. FEMS Microbiology Letters, 339(2), 77-92. doi:10.1111/1574-6968.12054

Gao, P., Hirano, T., Chen, Z., Yasuhara, T., Nakata, Y., & Sugimoto, A. (2012). Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of ganoderma lucidum (reishi mushroom). Fitoterapia, 83(3), 490-499. doi:10.1016/j.fitote.2011.12.014

Gąsecka, M., Magdziak, Z., Siwulski, M., & Mleczek, M. (2018). Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of agaricus. European Food Research and Technology, 244(2), 259-268. doi:10.1007/s00217-017-2952-9

Gashaw, G., Fassil, A., & Redi, F. (2020). Evaluation of the antibacterial activity of pleurotus spp. cultivated on different agricultural wastes in chiro, ethiopia. International Journal of Microbiology, 2020 doi:10.1155/2020/9312489

Goyal, S., Ramawat, G. K., & Mérillon, M. J. (2016). Different shades of fungal metabolites: An overview. Fungal Metabolites, , 1-29. Retrieved from www.scopus.com

Hagan, L. L., Johnson, P. -. T., Obodai, M., Blay, A. M. Y., Simons, C., & Dzomeku, M. (2018). Sensory attributes of three edible tropical mushrooms and their use in formulating food products for children 2-5 years old. International Journal of Nutrition and Food Sciences, 7(3), 100-109. Retrieved from www.scopus.com

Hetland, G., Johnson, E., Lyberg, T., & Kvalheim, G. (2011). The mushroom agaricus blazei murill elicits medicinal effects on tumor, infection, allergy, and inflammation through its modulation of innate immunity and amelioration of Th1/Th2 imbalance and inflammation. Advances in Pharmacological Sciences, 2011 doi:10.1155/2011/157015

Huang, H. -., Korivi, M., Chaing, Y. -., Chien, T. -., & Tsai, Y. -. (2012). Pleurotus tuber-regium polysaccharides attenuate hyperglycemia and oxidative stress in experimental diabetic rats. Evidence-Based Complementary and Alternative Medicine, 2012 doi:10.1155/2012/856381

Kalač, P. (2016). Chapter 1 - introduction. Edible Mushrooms Chemical Composition and Nutritional Value.Pp1-6, , 1-6. Retrieved from www.scopus.com

Kalinina, S. A., Jagels, A., Cramer, B., Geisen, R., & Humpf, H. -. (2017). Influence of environmental factors on the production of penitrems A–F by penicillium crustosum. Toxins, 9(7) doi:10.3390/toxins9070210

Kang, M. -., Yi, S. -., & Lee, J. -. (2013). Production and characterization of a new α-glucosidase inhibitory peptide from aspergillus oryzae N159-1. Mycobiology, 41(3), 149-154. doi:10.5941/MYCO.2013.41.3.149

Keller, N. P. (2019). Fungal secondary metabolism: Regulation, function and drug discovery. Nature Reviews Microbiology, 17(3), 167-180. doi:10.1038/s41579-018-0121-1

Khan, I. (2011). An Investigation of Potential Marketing Strategies for Entry into the Shiitake Mushroom Industry in Utah, Retrieved from www.scopus.com

Kimatu, B. M., Zhao, L., Biao, Y., Ma, G., Yang, W., Pei, F., & Hu, Q. (2017). Antioxidant potential of edible mushroom (agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chemistry, 230, 58-67. doi:10.1016/j.foodchem.2017.03.030

Kumaran, R. S., Jung, H., & Kim, H. J. (2011). In vitro screening of taxol, an anticancer drug produced by the fungus, colletotrichum capsici. Engineering in Life Sciences, 11(3), 264-271. doi:10.1002/elsc.201000119

Künzler, M. (2018). How fungi defend themselves against microbial competitors and animal predators. PLoS Pathogens, 14(9) doi:10.1371/journal.ppat.1007184

Lee, S., Ryoo, R., Choi, J. H., Kim, J. -., Kim, S. -., & Kim, K. H. (2020). Trichothecene and tremulane sesquiterpenes from a hallucinogenic mushroom gymnopilus junonius and their cytotoxicity. Archives of Pharmacal Research, 43(2), 214-223. doi:10.1007/s12272-020-01213-6

Lin, W. -., Deng, J. -., Huang, S. -., Wu, S. -., Chen, C. -., Lin, W. -., . . . Huang, G. -. (2017). Anti-inflammatory activity of sanghuangporus sanghuang mycelium. International Journal of Molecular Sciences, 18(2) doi:10.3390/ijms18020347

Lindequist, U., Niedermeyer, T. H. J., & Jülich, W. -. (2005). The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3), 285-299. doi:10.1093/ecam/neh107

Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D., & Hu, Q. (2018). A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness, 7(2), 125-133. doi:10.1016/j.fshw.2018.05.002

Mahmood, R. I., Abbass, A. K., Al-Saffar, A. Z., & Al-Obaidi, J. R. (2021). An in vitro cytotoxicity of a novel pH-sensitive lectin loaded-cockle shell-derived calcium carbonate nanoparticles against MCF-7 breast tumour cell. Journal of Drug Delivery Science and Technology, 61 doi:10.1016/j.jddst.2020.102230

Matsushita, Y., Furutani, Y., Matsuoka, R., & Furukawa, T. (2018). Hot water extract of agaricus blazei murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC Complementary and Alternative Medicine, 18(1) doi:10.1186/s12906-018-2385-4

Matuszewska, A., Jaszek, M., Stefaniuk, D., Ciszewski, T., & Matuszewski, Ł. (2018). Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus cerrena unicolor. PLoS ONE, 13(6) doi:10.1371/journal.pone.0197044

Muna, G. A., John, M., Benson, M., & Ogoyi, D. (2015). Antioxidant properties of cultivated edible mushroom (agaricus bisporus) in kenya. African J.Biotechnol., 14(16), 1401-1408. Retrieved from www.scopus.com

Nakalembe, I., Kabasa, J. D., & Olila, D. (2015). Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, uganda. SpringerPlus, 4(1) doi:10.1186/s40064-015-1188-z

Naranjo-Ortiz, M. A., & Gabaldón, T. (2019). Fungal evolution: Major ecological adaptations and evolutionary transitions. Biological Reviews, 94(4), 1443-1476. doi:10.1111/brv.12510

Newman, D. J. (2016). Predominately uncultured microbes as sources of bioactive agents. Frontiers in Microbiology, 7(NOV) doi:10.3389/fmicb.2016.01832

Ohno, S., Sumiyoshi, Y., Hashine, K., Shirato, A., Kyo, S., & Inoue, M. (2011). Phase i clinical study of the dietary supplement, agaricus blazei murill, in cancer patients in remission. Evidence-Based Complementary and Alternative Medicine, 2011 doi:10.1155/2011/192381

Patinho, I., Saldaña, E., Selani, M. M., de Camargo, A. C., Merlo, T. C., Menegali, B. S., . . . Contreras-Castillo, C. J. (2019). Use of agaricus bisporus mushroom in beef burgers: Antioxidant, flavor enhancer and fat replacing potential. Food Production, Processing and Nutrition, 1(1) doi:10.1186/s43014-019-0006-3

Prados-Rosales, R., Toriola, S., Nakouzi, A., Chatterjee, S., Stark, R., Gerfen, G., . . . Casadevall, A. (2015). Structural characterization of melanin pigments from commercial preparations of the edible mushroom auricularia auricula. Journal of Agricultural and Food Chemistry, 63(33), 7326-7332. doi:10.1021/acs.jafc.5b02713

Pushparajah, V., Fatima, A., Chong, C. H., Gambule, T. Z., Chan, C. J., Ng, S. T., . . . Lim, R. L. H. (2016). Characterisation of a new fungal immunomodulatory protein from tiger milk mushroom, lignosus rhinocerotis. Scientific Reports, 6 doi:10.1038/srep30010

Qin, D. -., & Han, C. (2014). Medicinal and edible fungi as an alternative medicine for treating age-related disease. Evidence-Based Complementary and Alternative Medicine, 2014 doi:10.1155/2014/638561

Rafiee, Z., & Jafari, S. M. (2018). Application of lipid nanocarriers for the food industry. Bioactive Molecules in Food, , 1-43. Retrieved from www.scopus.com

Reis, F. S., Martins, A., Barros, L., & Ferreira, I. C. F. R. (2012). Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and Chemical Toxicology, 50(5), 1201-1207. doi:10.1016/j.fct.2012.02.013

Richter, L., Wanka, F., Boecker, S., Storm, D., Kurt, T., Vural, Ö., . . . Meyer, V. (2014). Engineering of aspergillus niger for the production of secondary metabolites. Fungal Biol.Biotechnol., 1(1) Retrieved from www.scopus.com

Rózsa, S., Măniuțiu, D. -., Poșta, G., Gocan, T. -., Andreica, I., Bogdan, I., . . . Laza, V. (2019). Influence of the culture substrate on the agaricus blazei murrill mushrooms vitamins content. Plants, 8(9) doi:10.3390/plants8090316

Sabaratnam, V., Kah-Hui, W., Naidu, M., & David, P. (2013). Neuronal health - can culinary and medicinal mushrooms help? Journal of Traditional and Complementary Medicine, 3(1), 62-68. doi:10.4103/2225-4110.106549

Sánchez, C. (2017). Bioactives from mushroom and their application. Food bioactives: Extraction and biotechnology applications (pp. 23-57) doi:10.1007/978-3-319-51639-4_2 Retrieved from www.scopus.com

Schmidt-Dannert, C. (2016). Biocatalytic portfolio of basidiomycota. Current Opinion in Chemical Biology, 31, 40-49. doi:10.1016/j.cbpa.2016.01.002

Sheeba, H., Ali, M. S., & Anuradha, V. (2020). In-vitro anti-cancer activity of endophytic fungi isolated from ziziphus mauritiana in cervical cancer cell line. Eur J Med Plants, 31(4), 38-48. Retrieved from www.scopus.com

Shimizu, T., Kawai, J., Ouchi, K., Kikuchi, H., Osima, Y., & Hidemi, R. (2016). Agarol, an ergosterol derivative from agaricus blazei, induces caspase-independent apoptosis in human cancer cells. International Journal of Oncology, 48(4), 1670-1678. doi:10.3892/ijo.2016.3391

Singh, B. P., Yadav, D., & Vij, S. (2017). Soybean bioactive molecules: Current trend and future prospective. Bioactive Molecules in Food, Reference Series in Phytochemistry, , 1-29. Retrieved from www.scopus.com

Smith, H., Doyle, S., & Murphy, R. (2015). Filamentous fungi as a source of natural antioxidants. Food Chemistry, 185, 389-397. doi:10.1016/j.foodchem.2015.03.134

Soldatou, S., Eldjarn, G. H., Huerta-Uribe, A., Rogers, S., & Duncan, K. R. (2019). Linking biosynthetic and chemical space to accelerate microbial secondary metabolite discovery. FEMS Microbiology Letters, 366(13) doi:10.1093/femsle/fnz142

Souza Filho, P. F., Nair, R. B., Andersson, D., Lennartsson, P. R., & Taherzadeh, M. J. (2018). Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biology and Biotechnology, 5(1), 1-10. doi:10.1186/s40694-018-0050-9

Stojkovic, D., Smiljkovic, M., Ciric, A., Glamoclija, J., Van Griensven, L., Ferreira, I. C. F. R., & Sokovic, M. (2019). An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany, 120, 100-103. doi:10.1016/j.sajb.2018.01.007

Taofiq, O., Rodrigues, F., Barros, L., Peralta, R. M., Barreiro, M. F., Ferreira, I. C. F. R., & Oliveira, M. B. P. P. (2019). Agaricus blazei murrill from brazil: An ingredient for nutraceutical and cosmeceutical applications. Food and Function, 10(2), 565-572. doi:10.1039/c8fo02461h

Thatoi, H., Singdevsachan, S. K., & Patra, J. K. (2018). Prebiotics and their production from unconventional raw materials (mushrooms). Therapeutic, probiotic, and unconventional foods (pp. 79-99) doi:10.1016/B978-0-12-814625-5.00005-4 Retrieved from www.scopus.com

Uzma, F., Mohan, C. D., Hashem, A., Konappa, N. M., Rangappa, S., Kamath, P. V., . . . Abd-Allah, E. F. (2018). Endophytic fungi-alternative sources of cytotoxic compounds: A review. Frontiers in Pharmacology, 9(APR) doi:10.3389/fphar.2018.00309

Valverde, M. E., Hernández-Pérez, T., & Paredes-López, O. (2015). Edible mushrooms: Improving human health and promoting quality life. International Journal of Microbiology, 2015 doi:10.1155/2015/376387

Vamanu, E. (2012). Determination of antioxidant and antimicrobial properties of agaricus bisporus from romanian market. Ovidius University Annals of Chemistry, 23, 47-52. Retrieved from www.scopus.com

Wang, J. B., St. Leger, R. J., & Wang, C. (2016). Advances in genomics of entomopathogenic fungi doi:10.1016/bs.adgen.2016.01.002 Retrieved from www.scopus.com

Wang, Y., Compton, C., Rankin, G. O., Cutler, S. J., Rojanasakul, Y., Tu, Y., & Chen, Y. C. (2017). 3-hydroxyterphenyllin, a natural fungal metabolite, induces apoptosis and S phase arrest in human ovarian carcinoma cells. International Journal of Oncology, 50(4), 1392-1402. doi:10.3892/ijo.2017.3894

Wasser, S. P. (2014). Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomedical Journal, 37(6), 345-356. doi:10.4103/2319-4170.138318

Wu, Y., Choi, M. -., Li, J., Yang, H., & Shin, H. -. (2016). Mushroom cosmetics: The present and future. Cosmetics, 3(3) doi:10.3390/cosmetics3030022

Xie, Y., Li, S., Sun, L., Liu, S., Wang, F., Wen, B., . . . Xin, F. (2018). Fungal immunomodulatory protein from nectria haematococca suppresses growth of human lung adenocarcinoma by inhibiting the pi3k/akt pathway. International Journal of Molecular Sciences, 19(11) doi:10.3390/ijms19113429

Xu, H., Kong, Y. -., Chen, X., Guo, M. -., Bai, X. -., Lu, Y. -., . . . Zhou, X. -. (2016). Recombinant FIP-gat, a fungal immunomodulatory protein from ganoderma atrum, induces growth inhibition and cell death in breast cancer cells. Journal of Agricultural and Food Chemistry, 64(13), 2690-2698. doi:10.1021/acs.jafc.6b00539

Zeilinger, S., Gupta, V. K., Dahms, T. E. S., Silva, R. N., Singh, H. B., Upadhyay, R. S., . . . Chandra Nayak, S. (2016). Friends or foes? emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40(2), 182-207. doi:10.1093/femsre/fuv045

Zhang, L. (2015). Secondary metabolites and bioactivities from higher fungi in china. Mini-Reviews in Medicinal Chemistry, 15(2), 157-177. doi:10.2174/1389557515666150227112445

Zhou, R., Han, Y. -., Zhang, M. -., Zhang, K. -., Ng, T. B., & Liu, F. (2017). Purification and characterization of a novel ubiquitin-like antitumour protein with hemagglutinating and deoxyribonuclease activities from the edible mushroom ramaria botrytis. AMB Express, 7(1) doi:10.1186/s13568-017-0346-9


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.