UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :1878-5352
Main Author :Fatimah, Is
Additional Authors :Azlan Kamari
Title :Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Arabian Journal of Chemistry
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
In this study, the synthesis of ZnO/SiO2 nanocomposites using bamboo leaf ash (BLA) and tested their photocatalytic activity for rhodamine B decolorization have been conducted. The nanocomposites were prepared by the sol?gel reaction of zinc acetate dihydrate, which was used as a zinc oxide precursor, with silica gel obtained from the caustic extraction of BLA. The effect of the Zn content (5, 10, and 20 wt%) on the physicochemical characteristics and photocatalytic activity of the nanocomposites was investigated. The results of X-ray diffraction, scanning electron microscopy, gas sorption, and transmission electron microscopy characterization confirmed the mesoporous structure of the composites containing nanoflower-like ZnO (wurtzite) nanoparticles of 10?30 nm in size dispersed on the silica support. Further, the nanocomposites were confirmed to be composed of ZnO/SiO2 by X-ray photoelectron spectroscopy analysis. Meanwhile, diffuse-reflectance UV?visible spectrophotometry analysis of the nanocomposites revealed band gap energies of 3.38?3.39 eV. Of the tested nanocomposites, that containing 10 wt% Zn exhibited the highest decolorization efficiency (99%) and fastest decolorization rate. In addition, the degradation efficiencies were not reduced significantly after five repeated runs, demonstrating the reusability of the nanocomposite catalysts. Therefore, the ZnO/SiO2 nanocomposite obtained from BLA is a promising reusable photocatalyst for the degradation of dye-polluted water. ? 2020 The Author(s)

References

Alakhras, F., Alhajri, E., Haounati, R., Ouachtak, H., Addi, A. A., & Saleh, T. A. (2020). A comparative study of photocatalytic degradation of rhodamine B using natural-based zeolite composites. Surfaces and Interfaces, 20 doi:10.1016/j.surfin.2020.100611

Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N., & Al-Douri, Y. (2013). XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramics International, 39(3), 2283-2292. doi:10.1016/j.ceramint.2012.08.075

Ali, A. M., Ismail, A. A., Najmy, R., & Al-Hajry, A. (2014). Preparation and characterization of ZnO-SiO2 thin films as highly efficient photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 275, 37-46. doi:10.1016/j.jphotochem.2013.11.002

Amdeha, E., & Mohamed, R. S. (2021). A green synthesized recyclable ZnO/MIL-101(fe) for rhodamine B dye removal via adsorption and photo-degradation under UV and visible light irradiation. Environmental Technology (United Kingdom), 42(6), 842-859. doi:10.1080/09593330.2019.1647290

Aqeel, T., & Abdullah, H. N. (2018). Direct one-step synthesis of mesoporous ZnO-silicate matrix using a true liquid crystal method. Main Group Chemistry, 17(3), 235-246. doi:10.3233/MGC-180266

Bindu, P., & Thomasa, S. (2017). Optical properties of ZnO nanoparticles synthesised from a polysaccharide and ZnCl2. Acta Physica Polonica A, 131(6), 1474-1478. doi:10.12693/APhysPolA.131.1474

Brijitta, J., Ramachandran, D., Chennakesavulu, K., Bera, S., Rabel, A. M., Prasath, S. S., & Mary, K. (2016). Mesoporous ZnO-SiO2 core-shell rods for UV absorbing and nonwetting applications. Materials Research Express, 3(2) doi:10.1088/2053-1591/3/2/025001

Chen, H., Zhao, L., Wang, G., He, X., Wang, X., Fang, W., & Du, X. (2017). Direct growth of ZnO nanorods on biogenic hierarchical rice husk SiO2 and their application to dye degradation. Clean Technologies and Environmental Policy, 19(5), 1335-1345. doi:10.1007/s10098-017-1332-2

Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12(1) doi:10.1186/s11671-017-1904-4

Chueh, C. -., Chen, C. -., Su, Y. -., Konnerth, H., Gu, Y. -., Kung, C. -., & Wu, K. C. -. (2019). Harnessing MOF materials in photovoltaic devices: Recent advances, challenges, and perspectives. Journal of Materials Chemistry A, 7(29), 17079-17095. doi:10.1039/c9ta03595h

D'Arienzo, M., Mostoni, S., Crapanzano, R., Cepek, C., Di Credico, B., Fasoli, M., . . . Scotti, R. (2019). Insight into the influence of ZnO defectivity on the catalytic generation of environmentally persistent free radicals in ZnO/SiO2 systems. Journal of Physical Chemistry C, 123(35), 21651-21661. doi:10.1021/acs.jpcc.9b06900

Devi, L. G., & Shyamala, R. (2018). Photocatalytic activity of SnO2-a-Fe2O3 composite mixtures: Exploration of number of active sites, turnover number and turnover frequency. Materials Chemistry Frontiers, 2(4), 796-806. doi:10.1039/c7qm00536a

El-Naggar, M. E., Hassabo, A. G., Mohamed, A. L., & Shaheen, T. I. (2017). Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics. Journal of Colloid and Interface Science, 498, 413-422. doi:10.1016/j.jcis.2017.03.080

Fatimah, I., Amaliah, S. N., Andrian, M. F., Handayani, T. P., Nurillahi, R., Prakoso, N. I., . . . Chuenchom, L. (2019). Iron oxide nanoparticles supported on biogenic silica derived from bamboo leaf ash for rhodamine B photodegradation. Sustainable Chemistry and Pharmacy, 13 doi:10.1016/j.scp.2019.100149

Fatimah, I., Prakoso, N. I., Sahroni, I., Musawwa, M. M., Sim, Y. -., Kooli, F., & Muraza, O. (2019). Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves. Heliyon, 5(11) doi:10.1016/j.heliyon.2019.e02766

Fatimah, I., Rubiyanto, D., Taushiyah, A., Najah, F. B., Azmi, U., & Sim, Y. -. (2019). Use of ZrO 2 supported on bamboo leaf ash as a heterogeneous catalyst in microwave-assisted biodiesel conversion. Sustainable Chemistry and Pharmacy, 12 doi:10.1016/j.scp.2019.100129

Grigorie, A. C., Muntean, C., Vlase, T., Locovei, C., & Stefanescu, M. (2017). ZnO-SiO2 based nanocomposites prepared by a modified sol-gel method. Materials Chemistry and Physics, 186, 399-406. doi:10.1016/j.matchemphys.2016.11.011

Hu, B., Sun, Q., Zuo, C., Pei, Y., Yang, S., Zheng, H., & Liu, F. (2019). A highly efficient porous rod-like ce-doped ZnO photocatalyst for the degradation of dye contaminants in water. Beilstein Journal of Nanotechnology, 10, 1157-1165. doi:10.3762/BJNANO.10.115

Huang, D., Zhang, Y., Zhang, J., Wang, H., Wang, M., Wu, C., . . . Zhao, Z. (2019). The synergetic effect of a structure-engineered mesoporous SiO2-ZnO composite for doxycycline adsorption. RSC Advances, 9(66), 38772-38782. doi:10.1039/c9ra08106b

Ingale, P., Knemeyer, K., Hermida, M. P., D’alnoncourt, R. N., Thomas, A., & Rosowski, F. (2020). Atomic layer deposition of zno on mesoporous silica: Insights into growth behavior of zno via in-situ thermogravimetric analysis. Nanomaterials, 10(5) doi:10.3390/nano10050981

Johar, M. A., Afzal, R. A., Alazba, A. A., & Manzoor, U. (2015). Photocatalysis and bandgap engineering using ZnO nanocomposites. Retrieved from www.scopus.com

Kamarulzaman, N., Kasim, M. F., & Rusdi, R. (2015). Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Research Letters, 10(1) doi:10.1186/s11671-015-1034-9

Kitsou, I., Panagopoulos, P., Maggos, T., & Tsetsekou, A. (2019). ZnO-coated SiO 2 nanocatalyst preparation and its photocatalytic activity over nitric oxides as an alternative material to pure ZnO. Applied Surface Science, 473, 40-48. doi:10.1016/j.apsusc.2018.12.146

Liu, L., Zhang, X., Yang, L., Ren, L., Wang, D., & Ye, J. (2017). Metal nanoparticles induced photocatalysis. National Science Review, 4(5), 761-780. doi:10.1093/nsr/nwx019

Madjene, F., Assassi, M., Chokri, I., Enteghar, T., & Lebik, H. (2021). Optimization of photocatalytic degradation of rhodamine B using Box–Behnken experimental design: Mineralization and mechanism. Water Environment Research, 93(1), 112-122. doi:10.1002/wer.1360

Medina, J., Bolaños, H., Mosquera-Sanchez, L. P., & Rodriguez-Paez, J. E. (2018). Controlled synthesis of ZnO nanoparticles and evaluation of their toxicity in mus musculus mice. Int.Nano Lett., 8(3), 165-179. Retrieved from www.scopus.com

Mohd Adnan, M. A., Julkapli, N. M., & Abd Hamid, S. B. (2016). Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Reviews in Inorganic Chemistry, 36(2), 77-104. doi:10.1515/revic-2015-0015

Nagaraju, G., Shivaraju, G. C., Banuprakash, G., & Rangappa, D. (2017). Photocatalytic activity of ZnO nanoparticles: Synthesis via solution combustion method. Paper presented at the Materials Today: Proceedings, , 4(11) 11700-11705. doi:10.1016/j.matpr.2017.09.085 Retrieved from www.scopus.com

Saeed, K., Khan, I., Gul, T., & Sadiq, M. (2017). Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. Applied Water Science, 7(7), 3841-3848. doi:10.1007/s13201-017-0535-3

Shen, X., Shi, Y., Shao, H., Liu, Y., & Zhai, Y. (2020). Synthesis and photocatalytic degradation ability evaluation for rhodamine B of ZnO@SiO2 composite with flower-like structure. Water Science and Technology, 80(10), 1986-1995. doi:10.2166/wst.2020.020

Shinde, D. R., Tambade, P. S., Chaskar, M. G., & Gadave, K. M. (2017). Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO2 and SnO2: A comparative study. Drinking Water Engineering and Science, 10(2), 109-117. doi:10.5194/dwes-10-109-2017

Sinha, T., & Ahmaruzzaman, M. (2016). Photocatalytic decomposition behavior and reaction pathways of organic compounds using cu nanoparticles synthesized: Via a green route. Photochemical and Photobiological Sciences, 15(10), 1275-1281. doi:10.1039/c6pp00116e

Soltani, R. D. C., Shams Khoramabadi, G., Godini, H., & Noorimotlagh, Z. (2015). The application of ZnO/SiO2 nanocomposite for the photocatalytic degradation of a textile dye in aqueous solutions in comparison with pure ZnO nanoparticles. Desalination and Water Treatment, 56(9), 2551-2558. doi:10.1080/19443994.2014.964781

Sriwahyuni, E., Prodjosantoso, A. K., & Sasmita, D. (2019). Zinc oxide supported onto biogenic silica from gigantochloa atroviolacea leaves: Preparation, characterization and antibacterial activity. Asian Journal of Chemistry, 31(10), 2197-2200. doi:10.14233/ajchem.2019.22060

Steplin Paul Selvin, S., Ganesh Kumar, A., Sarala, L., Rajaram, R., Sathiyan, A., Princy Merlin, J., & Sharmila Lydia, I. (2018). Photocatalytic degradation of rhodamine B using zinc oxide activated charcoal polyaniline nanocomposite and its survival assessment using aquatic animal model. ACS Sustainable Chemistry and Engineering, 6(1), 258-267. doi:10.1021/acssuschemeng.7b02335

You, J. B., Zhang, X. W., Song, H. P., Ying, J., Guo, Y., Yang, A. L., . . . Zhu, Q. S. (2009). Energy band alignment of SiO2/ZnO interface determined by x-ray photoelectron spectroscopy. Journal of Applied Physics, 106(4) doi:10.1063/1.3204028

Yu, T. -., Wei, M. R., Weng, C. Y., Su, W. M., Lu, C. C., Chen, Y. T., & Chen, H. (2017). Modulating the size of ZnO nanorods on SiO2 substrates by incorporating reduced graphene oxide into the seed layer solution. AIP Advances, 7(6) doi:10.1063/1.4986759

Zhao, Y., Liu, L., Cui, T., Tong, G., & Wu, W. (2017). Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition. Applied Surface Science, 412, 58-68. doi:10.1016/j.apsusc.2017.03.207


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.